scholarly journals Rockfall monitoring by Terrestrial Laser Scanning – case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain)

2011 ◽  
Vol 11 (3) ◽  
pp. 829-841 ◽  
Author(s):  
A. Abellán ◽  
J. M. Vilaplana ◽  
J. Calvet ◽  
D. García-Sellés ◽  
E. Asensio

Abstract. This case study deals with a rock face monitoring in urban areas using a Terrestrial Laser Scanner. The pilot study area is an almost vertical, fifty meter high cliff, on top of which the village of Castellfollit de la Roca is located. Rockfall activity is currently causing a retreat of the rock face, which may endanger the houses located at its edge. TLS datasets consist of high density 3-D point clouds acquired from five stations, nine times in a time span of 22 months (from March 2006 to January 2008). The change detection, i.e. rockfalls, was performed through a sequential comparison of datasets. Two types of mass movement were detected in the monitoring period: (a) detachment of single basaltic columns, with magnitudes below 1.5 m3 and (b) detachment of groups of columns, with magnitudes of 1.5 to 150 m3. Furthermore, the historical record revealed (c) the occurrence of slab failures with magnitudes higher than 150 m3. Displacements of a likely slab failure were measured, suggesting an apparent stationary stage. Even failures are clearly episodic, our results, together with the study of the historical record, enabled us to estimate a mean detachment of material from 46 to 91.5 m3 year−1. The application of TLS considerably improved our understanding of rockfall phenomena in the study area.

Author(s):  
M. Nakagawa ◽  
M. Taguchi

Abstract. In this paper, we focus on the development of intelligent construction vehicles to improve the safety of workers in construction sites. Generally, global navigation satellite system positioning is utilized to obtain the position data of workers and construction vehicles. However, construction fields in urban areas have poor satellite positioning environments. Therefore, we have developed a 3D sensing unit mounted on a construction vehicle for worker position data acquisition. The unit mainly consists of a multilayer laser scanner. We propose a real-time object measurement, classification and tracking methodology with the multilayer laser scanner. We also propose a methodology to estimate and visualize object behaviors with a spatial model based on a space subdivision framework consisting of agents, activities, resources, and modifiers. We applied the space subdivision framework with a geofencing approach using real-time object classification and tracking results estimated from temporal point clouds. Our methodology was evaluated using temporal point clouds acquired from a construction vehicle in drilling works.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 386
Author(s):  
Aino Keitaanniemi ◽  
Juho-Pekka Virtanen ◽  
Petri Rönnholm ◽  
Antero Kukko ◽  
Toni Rantanen ◽  
...  

An efficient 3D survey of a complex indoor environment remains a challenging task, especially if the accuracy requirements for the geometric data are high for instance in building information modeling (BIM) or construction. The registration of non-overlapping terrestrial laser scanning (TLS) point clouds is laborious. We propose a novel indoor mapping strategy that uses a simultaneous localization and mapping (SLAM) laser scanner (LS) to support the building-scale registration of non-overlapping TLS point clouds in order to reconstruct comprehensive building floor/3D maps. This strategy improves efficiency since it allows georeferenced TLS data to only be collected from those parts of the building that require such accuracy. The rest of the building is measured with SLAM LS accuracy. Based on the results of the case study, the introduced method can locate non-overlapping TLS point clouds with an accuracy of 18–51 mm using target sphere comparison.


2013 ◽  
Vol 353-356 ◽  
pp. 3405-3409
Author(s):  
Li Shen ◽  
Hui Xin Tai ◽  
Tong Yuan Ni

As a burgeoning survey approach, 3D laser scanning is currently more and more applied in traditional architecture survey. In the surveying practice for Tianwang Hall of Hangzhou Haichao Temple, by skillfully setting the targets, we efficiently and accurately collected relevant surveying data with 3D laser scanner. On this basis, utilizing jointed point clouds on inner and outer surface, we successfully obtained wall thickness, roof depth, and other data that could not be precisely captured through traditional surveying measures. Moreover, the width, height and size of main beams were also easily and accurately acquired. So far, 3D laser scanning has become a very effective measure in traditional architecture surveying.


Author(s):  
J. S. Markiewicz

The paper presents the orientation analysis of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images and orthoimages enriched by depth maps. Computer vision (CV) algorithms were used for the orientation; they were applied to test the correctness of the detection of tie points, as well as the accuracy, number and point distribution. For the source data, point clouds acquired from the terrestrial laser scanner Z+F 50063h for the two chambers in the Museum of King John III’s Palace in Wilanów were utilized.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3347 ◽  
Author(s):  
Zhishuang Yang ◽  
Bo Tan ◽  
Huikun Pei ◽  
Wanshou Jiang

The classification of point clouds is a basic task in airborne laser scanning (ALS) point cloud processing. It is quite a challenge when facing complex observed scenes and irregular point distributions. In order to reduce the computational burden of the point-based classification method and improve the classification accuracy, we present a segmentation and multi-scale convolutional neural network-based classification method. Firstly, a three-step region-growing segmentation method was proposed to reduce both under-segmentation and over-segmentation. Then, a feature image generation method was used to transform the 3D neighborhood features of a point into a 2D image. Finally, feature images were treated as the input of a multi-scale convolutional neural network for training and testing tasks. In order to obtain performance comparisons with existing approaches, we evaluated our framework using the International Society for Photogrammetry and Remote Sensing Working Groups II/4 (ISPRS WG II/4) 3D labeling benchmark tests. The experiment result, which achieved 84.9% overall accuracy and 69.2% of average F1 scores, has a satisfactory performance over all participating approaches analyzed.


Author(s):  
J. Gehrung ◽  
M. Hebel ◽  
M. Arens ◽  
U. Stilla

Abstract. Change detection is an important tool for processing multiple epochs of mobile LiDAR data in an efficient manner, since it allows to cope with an otherwise time-consuming operation by focusing on regions of interest. State-of-the-art approaches usually either do not handle the case of incomplete observations or are computationally expensive. We present a novel method based on a combination of point clouds and voxels that is able to handle said case, thereby being computationally less expensive than comparable approaches. Furthermore, our method is able to identify special classes of changes such as partially moved, fully moved and deformed objects in addition to the appeared and disappeared objects recognized by conventional approaches. The performance of our method is evaluated using the publicly available TUM City Campus datasets, showing an overall accuracy of 88 %.


Author(s):  
M. Lo Brutto ◽  
E. Iuculano ◽  
P. Lo Giudice

Abstract. The preservation of historic buildings can often be particularly difficult due to the lack of detailed information about architectural features, construction details, etc.. However, in recent years considerable technological innovation in the field of Architecture, Engineering, and Construction (AEC) has been achieved by the Building Information Modeling (BIM) process. BIM was developed as a methodology used mainly for new construction but, given its considerable potential, this approach can also be successfully used for existing buildings, especially for buildings of historical and architectural value. In this case, it is more properly referred to as Historic – or Heritage – Building Information Modeling (HBIM). In the HBIM process, it is essential to precede the parametric modeling phase of the building with a detailed 3D survey that allows the acquisition of all geometric information. This methodology, called Scan-to-BIM, involves the use of 3D survey techniques for the production of point clouds as a geometric “database” for parametric modeling. The Scan-to-BIM approach can have several issues relating to the complexity of the survey. The work aims to apply the Scan-to-BIM approach to the survey and modeling of a historical and architectural valuable building to test a survey method, based on integrating different techniques (topography, photogrammetry and laser scanning), that improves the data acquisition phase. The “Real Cantina Borbonica” (Cellar of Royal House of Bourbon) in Partinico (Sicily, Italy) was chosen as a case study. The work has allowed achieving the HBIM of the “Real Cantina Borbonica” and testing an approach based exclusively on a topographic constraint to merge in the same reference system all the survey data (laser scanner and photogrammetric point clouds).


Author(s):  
H. Macher ◽  
M. Boudhaim ◽  
P. Grussenmeyer ◽  
M. Siroux ◽  
T. Landes

<p><strong>Abstract.</strong> In the context of building renovation, infrared (IR) cameras are widely used to perform the energy audit of buildings. They allow analysing precisely the energetic performances of existing buildings and thermal analyses represent a key step for the reduction of energy consumption. They are also used to assess the thermal comfort of people living or working in a building. Building Information Models (BIM) are widespread to plan the rehabilitation of existing buildings and laser scanning is now commonly used to capture the geometry of buildings for as-built BIM creation. The combination of thermographic and geometric data presents a high number and variety of applications (Lagüela and Díaz-Vilariño, 2016). However, geometric and thermal information are generally acquired separately by different building stakeholders and thermal analyses are performed with independence of geometry. In this paper, the combination of thermal and geometric information is investigated for indoor of buildings. The aim of the project is to create 3D thermographic point clouds based on data acquired by a laser scanner and a thermal camera. Based on these point clouds, BIM models might be enriched with thermal information through the scan-to-BIM process.</p>


2020 ◽  
Vol 171 ◽  
pp. 02008
Author(s):  
Krzysztof Pyszny ◽  
Mariusz Sojka ◽  
Rafał Wróżyński

Planning green infrastructure in the cities is a challenging task for planners and city managers. Developing multifunctional green space systems provide many benefits including: increasing water retention, mitigating urban heat island effect, microclimate regulation, reducing air, water and noise pollution and conservation biodiversity. The greenery in the city also have an impact on human health. The paper presents the possibilities of using LiDAR data mapping vegetation density in urban areas on the example of Gorzów Wielkopolski (Poland). Maps made as a result of processing the point clouds obtained from airborne laser scanning represents the most accurate, comprehensive and detailed assessment of Gorzów Wielkopolski vegetation cover to date and establishes the baseline for greenery governance and planning of green infrastructure in the city.


Sign in / Sign up

Export Citation Format

Share Document