scholarly journals An integrated methodology to develop a standard for landslide early warning systems

2016 ◽  
Vol 16 (9) ◽  
pp. 2123-2135 ◽  
Author(s):  
Teuku Faisal Fathani ◽  
Dwikorita Karnawati ◽  
Wahyu Wilopo

Abstract. Landslides are one of the most widespread and commonly occurring natural hazards. In regions of high vulnerability, these complex hazards can cause significant negative social and economic impacts. Considering the worldwide susceptibility to landslides, it is necessary to establish a standard for early warning systems specific to landslide disaster risk reduction. This standard would provide guidance in conducting landslide detection, prediction, interpretation, and response. This paper proposes a new standard consisting of seven sub-systems for landslide early warning. These include risk assessment and mapping, dissemination and communication, establishment of the disaster preparedness and response team, development of an evacuation map, standardized operating procedures, installation of monitoring and warning services, and the building of local commitment to the operation and maintenance of the entire program. This paper details the global standard with an example of its application from Central Java, one of 20 landslide-prone provinces in Indonesia that have used this standard since 2012.

Author(s):  
Teuku Faisal Fathani ◽  
Dwikorita Karnawati ◽  
Wahyu Wilopo

Abstract. Landslides are one of the commonly occurring natural disasters with worldwide susceptibility. Some distinct features of these disasters are that the affected area has a high density of population, low accessibility and the locals have low level of knowledge about disaster mitigation. Considering these conditions, it is necessary to establish a standard for an early warning system specific to landslide disaster risk reduction. This standard is expected to be the guidance system in conducting detection, prediction, interpretation, and response in landslide disasters. This new standard introduces the seven sub-systems for landslide early warning, starting with risk assessment and mapping, dissemination and communication, establishment of disaster preparedness and response team, development of evacuation map, standardized operating procedures, installation of monitoring and warning services, and building a local commitment to the operation and maintenance of the entire program. Since 2012, Indonesia has implemented a trial for the seven sub-systems in 20 landslide-prone provinces throughout the country. An example of the application of the proposed methodology in a local community in Central Java, Indonesia is also described.


2013 ◽  
Vol 13 (1) ◽  
pp. 85-90 ◽  
Author(s):  
E. Intrieri ◽  
G. Gigli ◽  
N. Casagli ◽  
F. Nadim

Abstract. We define landslide Early Warning Systems and present practical guidelines to assist end-users with limited experience in the design of landslide Early Warning Systems (EWSs). In particular, two flow chart-based tools coming from the results of the SafeLand project (7th Framework Program) have been created to make them as simple and general as possible and in compliance with a variety of landslide types and settings at single slope scale. We point out that it is not possible to cover all the real landslide early warning situations that might occur, therefore it will be necessary for end-users to adapt the procedure to local peculiarities of the locations where the landslide EWS will be operated.


2006 ◽  
Vol 21 (S3) ◽  
pp. s82-s86 ◽  
Author(s):  

AbstractThis Panel Session consisted of five country reports (India, Indonesia, Maldives, Thailand, andNepal) and the common issues identified during the Panel discussions relative to seismic events in the Southeast Asia Region. Important issues identified included the needs for: (1) a legal framework upon which to base preparedness and response; (2) coordination between the many organizations involved; (3) early warning systems within and between countries; (4) command and control; (5) access to resources including logistics; (6) strengthening the health infrastructure; (7) professionalizing the field of disaster medicine and management; (8) management of communications and information; (9) management of dead bodies; and (10) mental health of the survivors and health workers.


2021 ◽  
Author(s):  
Luca Piciullo ◽  
Michele Calvello

<p>Landslide early warning systems (LEWS) can be classified in either territorial or local systems (Piciullo et al., 2018). Systems addressing single landslides, at slope scale, can be named local LEWS (Lo-LEWS), systems operating over wide areas, at regional scale, can be referred to as territorial systems (Te-LEWS). Te-LEWS deal with the occurrence of several landslides within wide warning zones at municipal/regional/national scale. Nowadays, there are around 30 Te-LEWS operational worldwide (Piciullo et al., 2018; Guzzetti et al., 2020). The performance evaluation of such systems is often overlooked, and a standardized procedure is still missing. Often the performance evaluation is based on 2 by 2 contingency tables computed for the joint frequency distribution of landslides and alerts, both considered as dichotomous variables. This approach can lead to an imprecise assessment of the warning model, because it cannot differentiate among different levels of warning and the variable number of landslides that may occur in a time interval.</p><p>To overcome this issue Calvello and Piciullo (2016) proposed an original method for the performance analysis of a warning model, named EDuMaP, acronym of the method’s three main phases: Event analysis, Duration Matrix computation, Performance assessment. The method is centered around the computation of a n by m duration matrix that quantifies the time associated with the occurrence (and non-occurrence) of a given landslide event in relation to the different warning levels adopted by a Te-LEWS. Different performance criteria and indicators can be applied to evaluate the computed duration matrix.</p><p>Since 2016, the EDuMaP method has been applied to evaluate the performance of several Te-LEWS operational worldwide: Rio de Janeiro, Brazil (Calvello and Piciullo, 2016); Norway, Vestlandet (Piciullo et al., 2017a); Piemonte region, Italy (Piciullo et al., 2020), Amalfi coast, Italy (Piciullo et al., 2017b). These systems have different structures and warning models with either fixed or variable warning zones. In all cases, the EDuMaP method has proved to be flexible enough to successfully perform the evaluation of the warning models, highlighting critical and positive aspects of such systems, as well as proving that simpler evaluation methods do not allow a detailed assessment of the seriousness of the errors and of the correctness of the predictions of Te-LEWS (Piciullo et al., 2020).</p><p>Calvello M, Piciullo L (2016) Assessing the performance of regional landslide early warning models: the EDuMaP method. Nat Hazards Earth Syst Sc 16:103–122. https://doi.org/10.5194/nhess-16-103-2016</p><p>Guzzetti et al (2020) Geographical landslide early warning systems. Earth Sci Rev 200:102973. https://doi.org/10.1016/j.earsc irev.2019.102973</p><p>Piciullo et al (2018) Territorial early warning systems for rainfall-induced landslides. Earth Sci Rev 179:228–247. https://doi.org/10.1016/j.earscirev.2018.02.013</p><p>Piciullo et al (2017a) Adaptation of the EDuMaP method for the performance evaluation of the alerts issued on variable warning zones. Nat Hazards Earth Sys Sc 17:817–831. https://doi.org/10.5194/nhess-17-817-2017</p><p>Piciullo et al (2017b) Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 14:995–1008. https://doi.org/10.1007/s10346-016-0750-2</p><p>Piciullo et al (2020). Standards for the performance assessment of territorial landslide early warning systems. Landslides 17:2533–2546. https://doi.org/10.1007/s10346-020-01486-4</p>


Landslides ◽  
2020 ◽  
Vol 17 (9) ◽  
pp. 2231-2246
Author(s):  
Hemalatha Thirugnanam ◽  
Maneesha Vinodini Ramesh ◽  
Venkat P. Rangan

2020 ◽  
Author(s):  
Ruihua Xiao

<p>For the recent years, highway safety control under extreme natural hazards in China has been facing critical challenges because of the latest extreme climates. Highway is a typical linear project, and neither the traditional single landslide monitoring and early warning model entirely dependent on displacement data, nor the regional meteorological early warning model entirely dependent on rainfall intensity and duration are suitable for it. In order to develop an efficient early warning system for highway safety, the authors have developed an early warning method based on both monitoring data obtained by GNSS and Crack meter, and meteorological data obtained by Radar. This early-warning system is not each of the local landslide early warning systems (Lo-LEWSs) or the territorial landslide early warning systems (Te-LEWSs), but a new system combining both of them. In this system, the minimum warning element is defined as the slope unit which can connect a single slope to the regional ones. By mapping the regional meteorological warning results to each of the slope units, and extending the warning results of the single landslides to the similar slope units, we can realize the organic combination of the two warning methods. It is hopeful to improve the hazard prevention and safety control for highway facilities during critical natural hazards with the progress of this study.</p>


2021 ◽  
Vol 21 (9) ◽  
pp. 2753-2772
Author(s):  
Doris Hermle ◽  
Markus Keuschnig ◽  
Ingo Hartmeyer ◽  
Robert Delleske ◽  
Michael Krautblatter

Abstract. While optical remote sensing has demonstrated its capabilities for landslide detection and monitoring, spatial and temporal demands for landslide early warning systems (LEWSs) had not been met until recently. We introduce a novel conceptual approach to structure and quantitatively assess lead time for LEWSs. We analysed “time to warning” as a sequence: (i) time to collect, (ii) time to process and (iii) time to evaluate relevant optical data. The difference between the time to warning and “forecasting window” (i.e. time from hazard becoming predictable until event) is the lead time for reactive measures. We tested digital image correlation (DIC) of best-suited spatiotemporal techniques, i.e. 3 m resolution PlanetScope daily imagery and 0.16 m resolution unmanned aerial system (UAS)-derived orthophotos to reveal fast ground displacement and acceleration of a deep-seated, complex alpine mass movement leading to massive debris flow events. The time to warning for the UAS/PlanetScope totals 31/21 h and is comprised of time to (i) collect – 12/14 h, (ii) process – 17/5 h and (iii) evaluate – 2/2 h, which is well below the forecasting window for recent benchmarks and facilitates a lead time for reactive measures. We show optical remote sensing data can support LEWSs with a sufficiently fast processing time, demonstrating the feasibility of optical sensors for LEWSs.


Sign in / Sign up

Export Citation Format

Share Document