scholarly journals ProbFire: a probabilistic fire early warning system for Indonesia

2021 ◽  
Author(s):  
Tadas Nikonovas ◽  
Allan C. Spessa ◽  
Stefan H. Doerr ◽  
Gareth D. Clay ◽  
Symon Mezbahuddin

Abstract. Recurrent extreme landscape fire episodes associated with drought events in Indonesia pose severe environmental, societal and economic threats. The ability to predict severe fire episodes months in advance would enable relevant agencies and communities more effectively initiate fire preventative measures and mitigate fire impacts. While dynamic seasonal climate predictions are increasingly skilful at predicting fire-favourable conditions months in advance in Indonesia, there is little evidence that such information is widely used yet by decision makers. In this study, we move beyond forecasting fire risk based on drought predictions at seasonal timescales, and (i) develop a probabilistic early fire warning system for Indonesia (ProbFire) based on multilayer perceptron model using ECMWF SEAS5 dynamic climate forecasts together with forest cover, peatland extent and active fire datasets that can be operated on a standard computer, (ii) benchmark the performance of this new system for the 2002–2019 period, and (iii) evaluate the potential economic benefit such integrated forecasts for Indonesia. ProbFire's event probability predictions outperformed climatology-only based fire predictions at three to five-month lead times in south Kalimantan, south Sumatra and south Papua. In central Sumatra, an improvement was observed only at one month lead time, while in west Kalimantan seasonal predictions did not offer any additional benefit over climatology only-based predictions. We (i) find that seasonal climate forecasts coupled with the fire probability prediction model confer substantial benefits to a wide range of stakeholders involved in fire management in Indonesia and (ii) provide a blueprint for future operational fire warning systems that integrate climate predictions with non-climate features.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yoonhee Kim ◽  
J. V. Ratnam ◽  
Takeshi Doi ◽  
Yushi Morioka ◽  
Swadhin Behera ◽  
...  

AbstractAlthough there have been enormous demands and efforts to develop an early warning system for malaria, no sustainable system has remained. Well-organized malaria surveillance and high-quality climate forecasts are required to sustain a malaria early warning system in conjunction with an effective malaria prediction model. We aimed to develop a weather-based malaria prediction model using a weekly time-series data including temperature, precipitation, and malaria cases from 1998 to 2015 in Vhembe, Limpopo, South Africa and apply it to seasonal climate forecasts. The malaria prediction model performed well for short-term predictions (correlation coefficient, r > 0.8 for 1- and 2-week ahead forecasts). The prediction accuracy decreased as the lead time increased but retained fairly good performance (r > 0.7) up to the 16-week ahead prediction. The demonstration of the malaria prediction process based on the seasonal climate forecasts showed the short-term predictions coincided closely with the observed malaria cases. The weather-based malaria prediction model we developed could be applicable in practice together with skillful seasonal climate forecasts and existing malaria surveillance data. Establishing an automated operating system based on real-time data inputs will be beneficial for the malaria early warning system, and can be an instructive example for other malaria-endemic areas.


2014 ◽  
Vol 11 (96) ◽  
pp. 20131162 ◽  
Author(s):  
A. Weisheimer ◽  
T. N. Palmer

Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time.


1994 ◽  
Vol 29 (3) ◽  
pp. 207-209 ◽  
Author(s):  
H. Puzicha

Effluents from point sources (industries, communities) and diffuse inputs introduce pollutants into the water of the river Rhine and cause a basic contaminant load. The aim is to establish a biological warning system to detect increased toxicity in addition to the already existing chemical-physical monitoring system. To cover a wide range of biocides, continuous working biotests at different trophic levels (bacteria, algae, mussels, water fleas, fishes) have been developed and proved. These are checked out for sensitivity against toxicants, reaction time, validity of data and practical handling under field conditions at the river. Test-specific appropriate methods are found to differentiate between the normal range of variation and true alarm signals.


1999 ◽  
Vol 40 (10) ◽  
pp. 1-8 ◽  
Author(s):  
T. Botterweg ◽  
D. W. Rodda

An Internationally funded Programme, involving the European Commission, the Global Environment Facility managed by UN Development Programme, the World Bank and the European Bank for Reconstruction and Development, is addressing river basin problems in a unique situation. The solution of these should lead to the prevention of pollution and better water quality, protected ecosystems, sustainable water resources and more efficient sewerage and waste water treatment facilities for the 90 million population living in the region and the reduction of pollution impact on the Black Sea into which the Danube River flows. The paper introduces current Programme activities, the challenges being met and progress. Work is described for implementing a monitoring strategy, an accident emergency warning system and implementation of the 1994 Strategic Action Plan. The applied research activity is explained. The Programme is a major activity with many elements addressing a wide range of environmental problems in the catchment of a major international waterway.


2011 ◽  
Vol 17 (2) ◽  
pp. 153-163 ◽  
Author(s):  
K. Ravi Shankar ◽  
K. Nagasree ◽  
B. Venkateswarlu ◽  
Pochaiah Maraty

2005 ◽  
Vol 25 (8) ◽  
pp. 1127-1137 ◽  
Author(s):  
Rod McCrea ◽  
Len Dalgleish ◽  
Will Coventry

2020 ◽  
Author(s):  
Eleanor A Ainscoe ◽  
Barbara Hofmann ◽  
Felipe Colon ◽  
Iacopo Ferrario ◽  
Quillon Harpham ◽  
...  

<p>The current increase in the volume and quality of Earth Observation (EO) data being collected by satellites offers the potential to contribute to applications across a wide range of scientific domains. It is well established that there are correlations between characteristics that can be derived from EO satellite data, such as land surface temperature or land cover, and the incidence of some diseases. Thanks to the reliable frequent acquisition and rapid distribution of EO data it is now possible for this field to progress from using EO in retrospective analyses of historical disease case counts to using it in operational forecasting systems.</p><p>However, bringing together EO-based and non-EO-based datasets, as is required for disease forecasting and many other fields, requires carefully designed data selection, formatting and integration processes. Similarly, it requires careful communication between collaborators to ensure that the priorities of that design process match the requirements of the application.</p><p>Here we will present work from the D-MOSS (Dengue forecasting MOdel Satellite-based System) project. D-MOSS is a dengue fever early warning system for South and South East Asia that will allow public health authorities to identify areas at high risk of disease epidemics before an outbreak occurs in order to target resources to reduce spreading of epidemics and improve disease control. The D-MOSS system uses EO, meteorological and seasonal weather forecast data, combined with disease statistics and static layers such as land cover, as the inputs into a dengue fever model and a water availability model. Water availability directly impacts dengue epidemics due to the provision of mosquito breeding sites. The datasets are regularly updated with the latest data and run through the models to produce a new monthly forecast. For this we have designed a system to reliably feed standardised data to the models. The project has involved a close collaboration between remote sensing scientists, geospatial scientists, hydrologists and disease modelling experts. We will discuss our approach to the selection of data sources, data source quality assessment, and design of a processing and ingestion system to produce analysis-ready data for input to the disease and water availability models.</p>


Sign in / Sign up

Export Citation Format

Share Document