scholarly journals Developing a framework for the assessment of current and future flood risk in Venice, Italy

2021 ◽  
Author(s):  
Julius Schlumberger ◽  
Christian Ferrarin ◽  
Sebastiaan N. Jonkman ◽  
Andres Diaz Loaiza ◽  
Alessandro Antonini ◽  
...  

Abstract. Flooding has been a serious struggle to the old-town of Venice, its residents and cultural heritage and continues to be a challenge in the future. Despite this existence-defining condition, limited scientific knowledge of flood hazard and flood damage modelling of the old-town of Venice is available to support decisions to mitigate existing and future flood risk. Therefore, this study proposes a risk assessment framework to provide a methodical and flexible instrument for decision-making for flood risk management in Venice. It uses a state-of-the-art hydrodynamic urban model to identify the hazard characteristics inside the city of Venice. Exposure, vulnerability, and corresponding damages are modelled by a multi-parametric, micro-scale damage model which is adapted to the specific context of Venice with its dense urban structure and high risk awareness. A set of individual protection scenarios is implemented to account for possible variability of flood preparedness of the residents. The developed risk assessment framework was tested for the flood event of 12 November 2019. It was able to reproduce flood characteristics and resulting damages well. A scenario analysis based on a meteorological event like 12 November 2019 was conducted to derive flood damage estimates for the year 2060 for a set of sea level rise scenarios in combination with a (partially) functioning storm surge barrier MOSE. The analysis suggests that a functioning MOSE barrier could prevent flood damages for the considered storm event and sea level scenarios almost entirely. It could reduce the damages by up to 34 % for optimistic sea level rise prognoses. However, damages could be 10 % to 600 % times higher in 2060 compared to 2019 for a partial closure of the storm surge barrier, depending on different levels of individual protection.

2020 ◽  
Author(s):  
Matthew Bilskie ◽  
Diana Del Angel ◽  
David Yoskowitz ◽  
Scott Hagen

Abstract A growing concern of coastal communities is an increase in flood risk and non-monetary consequences as a result of climate-induced impacts such as sea level rise (SLR). While previous studies have outlined the importance of quantifying future flood risk, most have focused on broad aggregations of monetary loss using bathtub SLR-type models. Here we quantify, for the first time at the multi-state scale, actual impacts to coastal communities at the census block level using a dynamic, high-resolution, biogeophysical modeling framework that accounts for future sea-levels and coastal landscapes. We demonstrate that future SLR can increase the number of damaged residential buildings by 600%, the population of displaced people by 500% and the need for shelter assistance of up to 460% from present-day conditions. An exponential increase in flood damage associated with increasing sea level deems it essential for stakeholders to plan for plausible future conditions rather than the current reality.


2006 ◽  
Vol 32 (2) ◽  
pp. 194-211 ◽  
Author(s):  
Tim L Webster ◽  
Donald L Forbes ◽  
Edward MacKinnon ◽  
Daniel Roberts

2006 ◽  
Vol 14 ◽  
pp. 259-264
Author(s):  
Hideaki FUJIMAKI ◽  
Hisamichi NOBUOKA ◽  
Nobuo MIMURA

2020 ◽  
Vol 20 (4) ◽  
pp. 1025-1044 ◽  
Author(s):  
Timothy Tiggeloven ◽  
Hans de Moel ◽  
Hessel C. Winsemius ◽  
Dirk Eilander ◽  
Gilles Erkens ◽  
...  

Abstract. Coastal flood hazard and exposure are expected to increase over the course of the 21st century, leading to increased coastal flood risk. In order to limit the increase in future risk, or even reduce coastal flood risk, adaptation is necessary. Here, we present a framework to evaluate the future benefits and costs of structural protection measures at the global scale, which accounts for the influence of different flood risk drivers (namely sea-level rise, subsidence, and socioeconomic change). Globally, we find that the estimated expected annual damage (EAD) increases by a factor of 150 between 2010 and 2080 if we assume that no adaptation takes place. We find that 15 countries account for approximately 90 % of this increase. We then explore four different adaptation objectives and find that they all show high potential in cost-effectively reducing (future) coastal flood risk at the global scale. Attributing the total costs for optimal protection standards, we find that sea-level rise contributes the most to the total costs of adaptation. However, the other drivers also play an important role. The results of this study can be used to highlight potential savings through adaptation at the global scale.


Author(s):  
Tai-Wen Hsu ◽  
Dong-Sin Shih ◽  
Chi-Yu Li ◽  
Yuan-Jyh Lan ◽  
Yu-Chen Lin

This study integrated coastal-watershed models and combined a risk assessment method to develop a methodology to investigate the impact resulting from coastal disasters under climate change. The mid-western coast of Taiwan suffering from land subsidence was selected as the demonstrative area for the vulnerability analysis based on prediction of sea level rise (SLR), wave run-up, overtopping, and coastal flooding under the scenarios of 2020 to 2039. Database from tidal gauges and satellite images were used to analyze sea level rise using EEMD (Ensemble Empirical Mode Decomposition). Extreme wave condition and storm surge were estimated by numerical simulation using WWM (Wind Wave Model) and POM (Princeton Ocean Model). Coastal inundation was then simulated via WASH123D watershed model. The risk map of study areas based on the analyses of vulnerability and disaster were established using the AHP (Analytic Hierarchy Process) technique. Predictions of sea level rise, the maximum wave condition and storm surge under the scenarios of 2020 to 2039 are presented. The results indicate that the sea level at the mid-western coast of Taiwan will rise in an average of 5.8 cm, equivalent to a rising velocity of 2.8 mm/year. The analysis indicates that Wuqi, Lukang, Mailiao, and Taixi townships are susceptive, low resistant and low resilient, and reaches the high risk level. The assessment provides that important information for making adaption policy in the mid-western coast of Taiwan.


2019 ◽  
Author(s):  
Timothy Tiggeloven ◽  
Hans de Moel ◽  
Hessel C. Winsemius ◽  
Dirk Eilander ◽  
Gilles Erkens ◽  
...  

Abstract. Coastal flood hazard and exposure are expected to increase over the course of the 21st century, leading to increased coastal flood risk. In order to limit the increase in future risk, or even reduce coastal flood risk, adaptation is necessary. Here, we present a framework to evaluate the future benefits and costs of structural protection measures at the global scale, which accounts for the influence of different flood risk drivers (namely: sea-level rise, subsidence, and socioeconomic change). Globally, we find that the estimated expected annual damage (EAD) increases by a factor of 150 between 2010 and 2080, if we assume that no adaptation takes place. We find that 15 countries account for approximately 90 % of this increase. We then explore four different adaptation objectives and find that they all show high potential to cost-effectively reduce (future) coastal flood risk at the global scale. Attributing the total costs for optimal protection standards, we find that sea-level rise contributes the most to the total costs of adaptation. However, the other drivers also play an important role. The results of this study can be used to highlight potential savings through adaptation at the global scale.


2020 ◽  
Vol 20 (6) ◽  
pp. 323-332
Author(s):  
Yoonkyung Park ◽  
Byungsoon Jung ◽  
Reeho Kim

The purpose of this study was to present disaster prevention performance targets for Korean coastal cities, given the rise in sea level due to climate change. The disaster prevention performance targets for coastal cities are used to assess flood risk caused by increased sea levels. The proposed disaster prevention performance targets give additional consideration for design tide level or design flood level, which are design factors for hydraulic structures located along the coast. The rate of sea level rise in the West Sea was 0.61 ㎝/year. It was the fastest rise rate of all of Korea's seas. The sea level rise rate in the East Sea was calculated at 0.58 ㎝/year. This study also quantitatively confirmed that flood damage increases according to sea level rise using the United States' Environmental Protection Agency-Storm Water Management Model (EPA-SWMM). This study suggested a method for setting the disaster prevention performance targets of expected flood damage in coastal cities. Therefore, suggested disaster prevention performance targets should be highly specialized for coastal cities. However, sea level rise and rainfall are key factors that cause floods. Therefore, further research on disaster prevention in coastal cities should be carried out to consider the combined effects of sea level rise and rainfall.


Author(s):  
Noor Suraya Romali ◽  
Zulkifli Yusop

Abstract In recent years, flood risk map has been widely accepted as a tool for flood mitigation. The risk of flooding is normally illustrated in terms of its hazard (flood inundation maps), while vulnerability emphasizes the consequences of flooding. In developing countries, published studies on flood vulnerability assessment are limited, especially on flood damage. This paper attempts to establish a flood damage and risk assessment framework for Segamat town in Johor, Malaysia. A combination of flood hazard (flood characteristics), exposure (value of exposed elements), and vulnerability (flood damage function curve) were used for estimating the flood damage. The flood depth and areal extent were obtained from flood modeling and mapping using HEC-HMS/RAS and Arc GIS, respectively. Expected annual damage (EAD) for residential areas (50,112 units) and commercial areas (9,318 premises) were RM12.59 million and RM2.96 million, respectively. The flood hazard map shows that Bandar Seberang area (46,184 properties) was the most affected by the 2011 flood. The flood damage map illustrates similar patterns, with Bandar Seberang suffering the highest damage. The damage distribution maps are useful for reducing future flood damage by identifying properties with high flood risk.


Author(s):  
George M. McLeod ◽  
Thomas R. Allen ◽  
Joshua G. Behr

Planning resiliency and sustainability of port operations and critical infrastructure requires risk assessment of storm surge exposure and potential sea level rise. An approach for rapid, screening-level assessment is developed to estimate the current and future risk of exposure to severe storm surges posed to marine terminal facilities in Norfolk, Virginia. The approach estimates the vertical elevation of local mean sea level fifty years into the future and attendant increases in potential storm surge heights. Inundation models are designed for baseline water levels and storm surges for category 1–3 hurricanes across five precautionary future sea level rise scenarios. In addition, tidal flooding poses an emerging threat because sea level rise will also force tides to higher elevations, suggesting that today’s extreme high tides may be the future mean high tide and today’s “nuisance” tidal flooding may in the future recur with chronic regularity. Potential tidal flooding levels are also modeled for each sea level scenario. This approach allows a port to assess relative risk tolerance across the range from lesser to more severe flooding events. Maps and tabular information in linked scenarios are used to summarize the extent, pattern, and depth of potential flooding. The methodology and data developed in this study may be applied to inform the timing and placement of planned assets and can be leveraged in the broader pursuit of optimization in support of long-term master planning at marine terminals.


Sign in / Sign up

Export Citation Format

Share Document