scholarly journals Supplementary material to "Automated snow avalanche release area delineation in data sparse, remote, and forested regions"

Author(s):  
John Sykes ◽  
Pascal Haegeli ◽  
Yves Bühler
2021 ◽  
Author(s):  
Hippolyte Kern ◽  
Nicolas Eckert ◽  
Vincent Jomelli ◽  
Delphine Grancher ◽  
Michael Deschatres ◽  
...  

2021 ◽  
Author(s):  
Pere Roig Lafon ◽  
Emma Suriñach ◽  
Mar Tapia

<p>Knowledge of the snow avalanche release area is key information in snow avalanche studies. However, it is not easy to obtain from a remote location. The study of the seismic vibrations produced in the initial stages of the snow avalanche, makes possible to identify their origin and to link them to the starting area of the snow avalanche. We developed a methodology for this purpose, applied to seismic data acquired from a 3D seismic station (2Hz eigenfrequency) placed at Cavern A in Vallée de la Sionne experimental site (VDLS, WSL-SLF), deployed in 2013 by UB-RISKNAT. This is the closest position to the snow avalanche release areas, at 700 m to the farthest point. We focus on spontaneous triggered snow avalanches to achieve better signal-to-noise ratio and to be more realistic on its application.</p><p>For the isolation of the Signal Onset (SON) section of seismic data, which corresponds to those vibrations produced by the initial stage of the snow avalanche, we use the STA/LTA ratios and seismic signal amplitude, common methodologies in seismology. The STA/LTA is used for the identification of the first vibrations produced by the movement of the snow mass and the seismic signal amplitude thresholds for the identification of the end of the SON section -when the snow avalanche front reaches the seismic sensor position-. The 3D seismic data [ZNE components] of the SON section were processed in time windows. The study of polarization of the particle motion to obtain the direction of the back-azimuth of the signal (Vidale, 1986; Jurckevicks, 1988) was carried out for each time window of the seismic signal. The accumulation of back-azimuth directions for the entire SON section is related to the origin of the vibrations and, by extension, to the snow avalanche release area.</p><p>The entire algorithm has been automated. In its application on all the trigger activations at VDLS since 2015 until 2020, it was achieved a success rate of 78% on snow avalanche release area identification. In addition, we defined an algorithm based on STA/LTA ratio to select the snow avalanches from other seismic events, used with a success rate of 95%.</p><p>We present the application of our method in a case study, a large spontaneous snow avalanche released on 16th February 2018 at VDLS. The snow avalanche had two main release areas, clearly identified in photos of the site. The two developed fronts can be recognized in the seismic data. The directions to the release areas from Cavern A position can be identified using the presented method. Also, more interpretations can be done on the downhill snow avalanche path.</p>


2021 ◽  
Author(s):  
John Sykes ◽  
Pascal Haegeli ◽  
Yves Bühler

Abstract. Potential avalanche release area (PRA) modelling is critical for generating automated avalanche terrain maps which provide low-cost large scale spatial representations of snow avalanche hazard for both infrastructure planning and recreational applications. Current methods are not applicable in mountainous terrain where high-resolution elevation models are unavailable and do not include an efficient method to account for avalanche release in forested terrain. This research focuses on expanding an existing PRA model to better incorporate forested terrain using satellite imagery and presents a novel approach for validating the model using local expertise, thereby broadening its application to numerous mountain ranges worldwide. The study area of this research is a remote portion of the Columbia Mountains in southeastern British Columbia, Canada which has no pre-existing high-resolution spatial data sets. Our research documents an open source workflow to generate high-resolution DEM and forest land cover data sets using optical satellite data processing. We validate the PRA model by collecting a polygon dataset of observed potential release areas from local guides, using a method which accounts for the uncertainty of human recollection and variability of avalanche release. The validation dataset allows us to perform a quantitative analysis of the PRA model accuracy and optimize the PRA model input parameters to the snowpack and terrain characteristics of our study area. Compared to the original PRA model our implementation of forested terrain and local optimization improved the percentage of validation polygons accurately modelled by 11.7 percentage points and reduced the number of validation polygons that were underestimated by 14.8 percentage points. Our methods demonstrate substantial improvement in the performance of the PRA model in forested terrain and provide means to generate the requisite input datasets and validation data to apply and evaluate the PRA model in vastly more mountainous regions worldwide than was previously possible.


Author(s):  
Yves Bühler ◽  
Daniel von Rickenbach ◽  
Andreas Stoffel ◽  
Stefan Margreth ◽  
Lukas Stoffel ◽  
...  

Abstract. Snow avalanche hazard is threatening people and infrastructure in all alpine regions with seasonal or permanent snow cover around the globe. Coping with this hazard is a big challenge and during the past centuries, different strategies were developed. Today, in Switzerland, experienced avalanche engineers produce hazard maps with a very high reliability based on avalanche cadastre information, terrain analysis, climatological datasets and numerical modelling of the flow dynamics for selected avalanche tracks that might affect settlements. However, for regions outside the considered settlement areas such area-wide hazard maps are not available mainly because of the too high cost, in Switzerland and in most mountain regions around the world. Therefore, hazard indication maps, even though they are less reliable and less detailed, are often the only spatial planning tool available. To produce meaningful and cost-effective avalanche hazard indication maps over large regions (regional to national scale), automated release area delineation has to be combined with volume estimations and state-of-the-art numerical avalanche simulations. In this paper we validate existing potential release area (PRA) delineation algorithms, published in peer-reviewed journals, that are based on digital terrain models and their derivatives such as slope angle, aspect, roughness and curvature. For validation, we apply avalanche cadastre data from three different ski resorts in the vicinity of Davos, Switzerland, where experienced ski-patrol staff mapped most avalanches in detail since many years. After calculating the best fit input parameters for every tested algorithm, we compare their performance based on the reference datasets. Because all tested algorithms do not provide meaningful delineation between individual potential release areas (PRA), we propose a new algorithm based on object-based image analysis (OBIA). In combination with an automatic procedure to estimate the average release depth (d0), defining the avalanche release volume, this algorithm enables the numerical simulation of thousands of avalanches over large regions applying the well-established avalanche dynamics model RAMMS. We demonstrate this for the region of Davos for two hazard scenarios, frequent (10–30 years return period) and extreme (100–300 years return period). This approach opens the door for large scale avalanche hazard indication mapping in all regions where high quality and resolution digital terrain models and snow data are available.


Author(s):  
Indah Pratiwi ◽  
Yanti Sri Rezeki

This research aims to design workbook based on the scientific approach for teaching writing descriptive text. This research was conducted on the seventh-grade students of SMPN 24 Pontianak. The method of this research is ADDIE (Analysis, Design, Development, Implementation, and Evaluation) with the exclusion of Implementation and Evaluation phases. This material was designed as supplementary material to support the course book used especially in teaching writing of descriptive text. The respondents in this research were the seventh-grade students and an English teacher at SMPN 24 Pontianak. In this research, the researchers found that workbook based on scientific approach fulfilled the criteria of the good book to teach writing descriptive text. The researchers conducted an internal evaluation to see the usability and the feasibility of the workbook. The result of the evaluation is 89%. It showed that the workbook is feasible to be used by students as the supplementary material to support the main course book and help the students improve their writing ability in descriptive text.


2019 ◽  
Author(s):  
Oriol Planas ◽  
Feng Wang ◽  
Markus Leutzsch ◽  
Josep Cornella

The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.<br>A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.<br>


Sign in / Sign up

Export Citation Format

Share Document