scholarly journals Estimating flood damage to railway infrastructure – the case study of the March River flood in 2006 at the Austrian Northern Railway

2015 ◽  
Vol 3 (4) ◽  
pp. 2629-2663
Author(s):  
P. Kellermann ◽  
A. Schöbel ◽  
G. Kundela ◽  
A. H. Thieken

Abstract. Models for estimating flood losses to infrastructure are rare and their reliability is seldom investigated although infrastructure losses might contribute considerably to the overall flood losses. In this paper, a statistical modelling approach for estimating direct structural flood damage to railway infrastructure and associated financial losses is presented. Via a combination of empirical data, i.e. photo-documented damage on the Northern Railway in Lower Austria caused by the March river flood in 2006, and simulated flood characteristics, i.e. water levels, flow velocities and combinations thereof, the correlations between physical flood impact parameters and damage occurred to the railway track were investigated and subsequently rendered into a damage model. After calibrating the loss estimation using recorded repair costs of the Austrian Federal Railways, the model was applied to three synthetic scenarios with return periods of 30, 100 and 300 years of March river flooding. Finally, the model results are compared to depth-damage curve based approaches for the infrastructure sector obtained from the Rhine Atlas damage model and the Damage Scanner model. The results of this case study indicate a good performance of our two-stage model approach. However, due to a lack of independent event and damage data, the model could not yet be validated. Future research in natural risk should focus on the development of event and damage documentation procedures to overcome this significant hurdle in flood damage modelling.

2015 ◽  
Vol 15 (11) ◽  
pp. 2485-2496 ◽  
Author(s):  
P. Kellermann ◽  
A. Schöbel ◽  
G. Kundela ◽  
A. H. Thieken

Abstract. Models for estimating flood losses to infrastructure are rare and their reliability is seldom investigated although infrastructure losses might contribute considerably to the overall flood losses. In this paper, an empirical modelling approach for estimating direct structural flood damage to railway infrastructure and associated financial losses is presented. Via a combination of event data, i.e. photo-documented damage on the Northern Railway in Lower Austria caused by the March River flood in 2006, and simulated flood characteristics, i.e. water levels, flow velocities and combinations thereof, the correlations between physical flood impact parameters and damage occurred to the railway track were investigated and subsequently rendered into a damage model. After calibrating the loss estimation using recorded repair costs of the Austrian Federal Railways, the model was applied to three synthetic scenarios with return periods of 30, 100 and 300 years of March River flooding. Finally, the model results are compared to depth-damage-curve-based approaches for the infrastructure sector obtained from the Rhine Atlas damage model and the Damage Scanner model. The results of this case study indicate a good performance of our two-stage model approach. However, due to a lack of independent event and damage data, the model could not yet be validated. Future research in natural risk should focus on the development of event and damage documentation procedures to overcome this significant hurdle in flood damage modelling.


2016 ◽  
Vol 16 (11) ◽  
pp. 2357-2371 ◽  
Author(s):  
Patric Kellermann ◽  
Christine Schönberger ◽  
Annegret H. Thieken

Abstract. Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.


2021 ◽  
Vol 310 ◽  
pp. 06003
Author(s):  
Aleksei Portnov

The science of cartography should provide a historical mission, that is navigation, and also meet modern agendas including significantly expanding opportunities for BIM technologies, integrating functions of GIS and CAD systems. In this regard, cartography should be considered a fundamental basis for modern trends while creating digital twins of spatial objects. The practical part of the provided experiments included data collecting aimed at Moscow Saints Petersburg railway infrastructure, the calculation of optimal parameters of the oblique Mercator projection in the Hotine version for the given object, and the construction of a 3D railway track model. This research investigated the principles of unique cartographic projections, strictly focused on the certain functioning objects. The research can helps many users and designers of digital twins of spatial objects pay their attention to the applied cartography specifics concerning these issues and also take into account the recommendations while creating Building Information Modelling (BIM) and Infrastructure Information Modelling (IIM) as well.


Author(s):  
Patric Kellermann ◽  
Christine Schönberger ◽  
Annegret H. Thieken

Abstract. Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than one hundred million euros due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate 1) the expected structural flood damage, and 2) the resulting repair costs of railway infrastructure due to a 30-year, 100-year and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.


2016 ◽  
Vol 53 (12) ◽  
pp. 1991-2000 ◽  
Author(s):  
Parisa Haji Abdulrazagh ◽  
Michael T. Hendry

Falling weight deflectometer (FWD) testing was conducted along with embankment and subgrade sampling over 210 km (130 miles) of Canadian National Railway’s Lac La Biche Subdivision, which runs between Edmonton and Fort McMurray, as a part of a larger investigation of the line for increased axle loads. The resulting measurements were evaluated for their ability to identify soft subgrades. Two analyses were conducted to this end. First, the statistical distribution of peak deflections recorded by the FWD was investigated for different types of subgrade material. Second, the properties of track substructure were studied by characterizing the deflection time histories using a dynamic model of a single mass on a viscoelastic foundation and least-squares curve fitting. Four characteristic types of deflection time histories were identified for differing substructure conditions. Simplified dynamic modelling of railway track substructure showed that where relatively thick embankment exists over subgrade, the response of track is overdamped behavior.


Author(s):  
Babak Bayat

Nonstructural flood damage minimization through optimizing a short term multi-reservoir system operation is considered in this paper using a simulation-based optimization model. The well known evolutionary computation technique of particle swarm optimization (PSO) has been combined with a simulation model of river flood routing. The hydraulic routing model includes numerical solution of unsteady gradually varied flow equations by Preissmann method. The developed model has been used in a three-reservoir system as a real case study southwest of Iran. The results show applicability and efficiency of the proposed simulation-optimization model in determining optimal reservoir releases.


2019 ◽  
Vol 2 (1) ◽  
pp. 41-52
Author(s):  
Nitin Mundhe

Floods are natural risk with a very high frequency, which causes to environmental, social, economic and human losses. The floods in the town happen mainly due to human made activities about the blockage of natural drainage, haphazard construction of roads, building, and high rainfall intensity. Detailed maps showing flood vulnerability areas are helpful in management of flood hazards. Therefore, present research focused on identifying flood vulnerability zones in the Pune City using multi-criteria decision-making approach in Geographical Information System (GIS) and inputs from remotely sensed imageries. Other input data considered for preparing base maps are census details, City maps, and fieldworks. The Pune City classified in to four flood vulnerability classes essential for flood risk management. About 5 per cent area shows high vulnerability for floods in localities namely Wakdewadi, some part of the Shivajinagar, Sangamwadi, Aundh, and Baner with high risk.


Sign in / Sign up

Export Citation Format

Share Document