scholarly journals Multiple equilibria and oscillatory modes in a mid-latitude ocean-forced atmospheric model

2012 ◽  
Vol 19 (5) ◽  
pp. 479-499 ◽  
Author(s):  
B. Deremble ◽  
E. Simonnet ◽  
M. Ghil

Abstract. Atmospheric response to a mid-latitude sea surface temperature (SST) front is studied, while emphasizing low-frequency modes induced by the presence of such a front. An idealized atmospheric quasi-geostrophic (QG) model is forced by the SST field of an idealized oceanic QG model. First, the equilibria of the oceanic model and the associated SST fronts are computed. Next, these equilibria are used to force the atmospheric model and compute its equilibria when varying the strength of the oceanic forcing. Low-frequency modes of atmospheric variability are identified and associated with successive Hopf bifurcations. The origin of these Hopf bifurcations is studied in detail, and connected to barotropic instability. Finally, a link is established between the model's time integrations and the previously obtained equilibria.

2013 ◽  
Vol 70 (8) ◽  
pp. 2574-2595 ◽  
Author(s):  
Sergey Kravtsov ◽  
Sergey K. Gulev

Abstract The authors analyze atmospheric variability simulated in a two-layer baroclinic β-channel quasigeostrophic model by combining Eulerian and feature-tracking analysis approaches. The leading mode of the model's low-frequency variability (LFV) is associated with the irregular shifts of the zonal-mean jet to the north and south of its climatological position accompanied by simultaneous intensification of the jet, while the deviations from the zonal-mean fields are dominated by propagating anomalies with wavenumbers 3–5. The model's variability is shown to stem from the life cycles of cyclones and anticyclones. In particular, synthetic streamfunction fields constructed by launching idealized composite-mean eddies along the actual full-model-simulated cyclone/anticyclone tracks reproduce nearly perfectly not only the dominant propagating waves, but also the jet-shifting LFV. The composite eddy tracks conditioned on the phase of the jet-shifting variability migrate north or south along with the zonal-mean jet. The synoptic-eddy life cycles in the states with poleward (equatorward) zonal-jet shift exhibit longer-than-climatological lifetimes; this is caused, arguably, by a barotropic feedback associated with preferred anticyclonic (cyclonic) wave breaking in these respective states. Lagged correlation and cross-spectrum analyses of zonal-mean jet position time series and the time series representing mean latitudinal location of the eddies at a given time demonstrate that jet latitude leads the storm-track latitude at low frequencies. This indicates that the LFV associated with the jet-shifting mode here is more dynamically involved than being a mere consequence of the random variations in the distribution of the synoptic systems.


2017 ◽  
Vol 30 (22) ◽  
pp. 9195-9211 ◽  
Author(s):  
John T. Fasullo ◽  
Peter R. Gent

Abstract An accurate diagnosis of ocean heat content (OHC) is essential for interpreting climate variability and change, as evidenced for example by the broad range of hypotheses that exists for explaining the recent hiatus in global mean surface warming. Potential insights are explored here by examining relationships between OHC and sea surface height (SSH) in observations and two recently available large ensembles of climate model simulations from the mid-twentieth century to 2100. It is found that in decadal-length observations and a model control simulation with constant forcing, strong ties between OHC and SSH exist, with little temporal or spatial complexity. Agreement is particularly strong on monthly to interannual time scales. In contrast, in forced transient warming simulations, important dependencies in the relationship exist as a function of region and time scale. Near Antarctica, low-frequency SSH variability is driven mainly by changes in the circumpolar current associated with intensified surface winds, leading to correlations between OHC and SSH that are weak and sometimes negative. In subtropical regions, and near other coastal boundaries, negative correlations are also evident on long time scales and are associated with the accumulated effects of changes in the water cycle and ocean dynamics that underlie complexity in the OHC relationship to SSH. Low-frequency variability in observations is found to exhibit similar negative correlations. Combined with altimeter data, these results provide evidence that SSH increases in the Indian and western Pacific Oceans during the hiatus are suggestive of substantial OHC increases. Methods for developing the applicability of altimetry as a constraint on OHC more generally are also discussed.


2017 ◽  
Author(s):  
Yair De-Leon ◽  
Nathan Paldor

Abstract. Using 20 years of accurately calibrated, high resolution, observations of Sea Surface Height Anomalies (SSHA) by satellite ‎borne altimeters we show that in the Indian Ocean south of the Australian coast the low frequency variations of SSHA are ‎dominated by westward propagating, trapped, i.e. non-harmonic, planetary waves. Our results demonstrate that the ‎meridional-dependent amplitudes of the SSHA are large only within a few degrees of latitude next to the South-Australian ‎coast while farther in the ocean they are uniformly small. This meridional variation of the SSHA signal is typical of the ‎amplitude structure in the trapped wave theory. The westward propagation speed of the SSHA signals is analyzed by ‎employing three different methods of estimation. Each one of these methods yields speed estimates that can vary widely ‎between adjacent latitudes but the combination of at least two of the three methods yields much smoother variation. The ‎estimates obtained in this manner show that the observed phase speeds at different latitudes exceed the phase speeds of ‎harmonic Rossby (Planetary) waves by 140 % to 200 %. In contrast, the theory of trapped Rossby (Planetary) waves in a ‎domain bounded by a wall on its equatorward side yields phase speeds that approximate more closely the observed phase ‎speeds.‎


2017 ◽  
Vol 8 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Julia Jeworrek ◽  
Lichuan Wu ◽  
Christian Dieterich ◽  
Anna Rutgersson

Abstract. Convective snow bands develop in response to a cold air outbreak from the continent or the frozen sea over the open water surface of lakes or seas. The comparatively warm water body triggers shallow convection due to increased heat and moisture fluxes. Strong winds can align with this convection into wind-parallel cloud bands, which appear stationary as the wind direction remains consistent for the time period of the snow band event, delivering enduring snow precipitation at the approaching coast. The statistical analysis of a dataset from an 11-year high-resolution atmospheric regional climate model (RCA4) indicated 4 to 7 days a year of moderate to highly favourable conditions for the development of convective snow bands in the Baltic Sea region. The heaviest and most frequent lake effect snow was affecting the regions of Gävle and Västervik (along the Swedish east coast) as well as Gdansk (along the Polish coast). However, the hourly precipitation rate is often higher in Gävle than in the Västervik region. Two case studies comparing five different RCA4 model setups have shown that the Rossby Centre atmospheric regional climate model RCA4 provides a superior representation of the sea surface with more accurate sea surface temperature (SST) values when coupled to the ice–ocean model NEMO as opposed to the forcing by the ERA-40 reanalysis data. The refinement of the resolution of the atmospheric model component leads, especially in the horizontal direction, to significant improvement in the representation of the mesoscale circulation process as well as the local precipitation rate and area by the model.


2006 ◽  
Vol 19 (6) ◽  
pp. 998-1012 ◽  
Author(s):  
Bruce T. Anderson ◽  
Eric Maloney

Abstract This paper describes aspects of tropical interannual ocean/atmosphere variability in the NCAR Community Climate System Model Version 2.0 (CCSM2). The CCSM2 tropical Pacific Ocean/atmosphere system exhibits much stronger biennial variability than is observed. However, a canonical correlation analysis technique decomposes the simulated boreal winter tropical Pacific sea surface temperature (SST) variability into two modes, both of which are related to atmospheric variability during the preceding boreal winter. The first mode of ocean/atmosphere variability is related to the strong biennial oscillation in which La Niña–related sea level pressure (SLP) conditions precede El Niño–like SST conditions the following winter. The second mode of variability indicates that boreal winter tropical Pacific SST anomalies can also be initiated by SLP anomalies over the subtropical central and eastern North Pacific 12 months earlier. The evolution of both modes is characterized by recharge/discharge within the equatorial subsurface temperature field. For the first mode of variability, this recharge/discharge produces a lag between the basin-average equatorial Pacific isotherm depth anomalies and the isotherm–slope anomalies, equatorial SSTs, and wind stress fields. Significant anomalies are present up to a year before the boreal winter SLP variations and two years prior to the boreal winter ENSO-like events. For the second canonical factor pattern, the recharge/discharge mechanism is induced concurrent with the boreal winter SLP pattern approximately one year prior to the ENSO-like events, when isotherms initially deepen and change their slope across the basin. A rapid deepening of the isotherms in the eastern equatorial Pacific and a warming of the overlying SST anomalies then occurs during the subsequent 12 months.


2012 ◽  
Vol 25 (8) ◽  
pp. 2782-2804 ◽  
Author(s):  
Joseph Allan Andersen ◽  
Zhiming Kuang

Abstract A Madden–Julian oscillation (MJO)-like spectral feature is observed in the time–space spectra of precipitation and column-integrated moist static energy (MSE) for a zonally symmetric aquaplanet simulated with Superparameterized Community Atmospheric Model (SPCAM). This disturbance possesses the basic structural and propagation features of the observed MJO. To explore the processes involved in propagation and maintenance of this disturbance, this study analyzes the MSE budget of the disturbance. The authors observe that the disturbances propagate both eastward and poleward. The column-integrated longwave heating is the only significant source of column-integrated MSE acting to maintain the MJO-like anomaly balanced against the combination of column-integrated horizontal and vertical advection of MSE and latent heat flux. Eastward propagation of the MJO-like disturbance is associated with MSE generated by both column integrated horizontal and vertical advection of MSE, with the column longwave heating generating MSE that retards the propagation. The contribution to the eastward propagation by the column-integrated horizontal advection of MSE is dominated by synoptic eddies. Further decomposition indicates that the advection contribution to the eastward propagation is dominated by meridional advection of MSE by anomalous synoptic eddies caused by the suppression of eddy activity ahead of the MJO convection. This suppression is linked to the barotropic conversion mechanism, with the gradients of the low-frequency wind experienced by the synoptic eddies within the MJO envelope acting to modulate the eddy kinetic energy. The meridional eddy advection’s contribution to poleward propagation is dominated by the mean state’s (meridionally varying) eddy activity acting on the anomalous MSE gradients associated with the MJO.


2012 ◽  
Vol 29 (1) ◽  
pp. 89-102 ◽  
Author(s):  
Chris T. Jones ◽  
Todd D. Sikora ◽  
Paris W. Vachon ◽  
John Wolfe

Abstract The Canadian Forces Meteorology and Oceanography Center produces a near-daily ocean feature analysis, based on sea surface temperature (SST) images collected by spaceborne radiometers, to keep the fleet informed of the location of tactically important ocean features. Ubiquitous cloud cover hampers these data. In this paper, a methodology for the identification of SST front signatures in cloud-independent synthetic aperture radar (SAR) images is described. Accurate identification of ocean features in SAR images, although attainable to an experienced analyst, is a difficult process to automate. As a first attempt, the authors aimed to discriminate between signatures of SST fronts and those caused by all other processes. Candidate SST front signatures were identified in Radarsat-2 images using a Canny edge detector. A feature vector of textural and contextual measures was constructed for each candidate edge, and edges were validated by comparison with coincident SST images. Each candidate was classified as being an SST front signature or the signature of another process using logistic regression. The resulting probability that a candidate was correctly classified as an SST front signature was between 0.50 and 0.70. The authors concluded that improvement in classification accuracy requires a set of measures that can differentiate between signatures of SST fronts and those of certain atmospheric phenomena and that a search for such measures should include a wider range of computational methods than was considered. As such, this work represents a step toward the goal of a general ocean feature classification algorithm.


Sign in / Sign up

Export Citation Format

Share Document