Interannual Tropical Pacific Sea Surface Temperatures and Their Relation to Preceding Sea Level Pressures in the NCAR CCSM2

2006 ◽  
Vol 19 (6) ◽  
pp. 998-1012 ◽  
Author(s):  
Bruce T. Anderson ◽  
Eric Maloney

Abstract This paper describes aspects of tropical interannual ocean/atmosphere variability in the NCAR Community Climate System Model Version 2.0 (CCSM2). The CCSM2 tropical Pacific Ocean/atmosphere system exhibits much stronger biennial variability than is observed. However, a canonical correlation analysis technique decomposes the simulated boreal winter tropical Pacific sea surface temperature (SST) variability into two modes, both of which are related to atmospheric variability during the preceding boreal winter. The first mode of ocean/atmosphere variability is related to the strong biennial oscillation in which La Niña–related sea level pressure (SLP) conditions precede El Niño–like SST conditions the following winter. The second mode of variability indicates that boreal winter tropical Pacific SST anomalies can also be initiated by SLP anomalies over the subtropical central and eastern North Pacific 12 months earlier. The evolution of both modes is characterized by recharge/discharge within the equatorial subsurface temperature field. For the first mode of variability, this recharge/discharge produces a lag between the basin-average equatorial Pacific isotherm depth anomalies and the isotherm–slope anomalies, equatorial SSTs, and wind stress fields. Significant anomalies are present up to a year before the boreal winter SLP variations and two years prior to the boreal winter ENSO-like events. For the second canonical factor pattern, the recharge/discharge mechanism is induced concurrent with the boreal winter SLP pattern approximately one year prior to the ENSO-like events, when isotherms initially deepen and change their slope across the basin. A rapid deepening of the isotherms in the eastern equatorial Pacific and a warming of the overlying SST anomalies then occurs during the subsequent 12 months.

2010 ◽  
Vol 23 (11) ◽  
pp. 2869-2884 ◽  
Author(s):  
Jin-Yi Yu ◽  
Hsun-Ying Kao ◽  
Tong Lee

Abstract Interannual sea surface temperature (SST) variability in the central equatorial Pacific consists of a component related to eastern Pacific SST variations (called Type-1 SST variability) and a component not related to them (called Type-2 SST variability). Lead–lagged regression and ocean surface-layer temperature balance analyses were performed to contrast their control mechanisms. Type-1 variability is part of the canonical, which is characterized by SST anomalies extending from the South American coast to the central Pacific, is coupled with the Southern Oscillation, and is associated with basinwide subsurface ocean variations. This type of variability is dominated by a major 4–5-yr periodicity and a minor biennial (2–2.5 yr) periodicity. In contrast, Type-2 variability is dominated by a biennial periodicity, is associated with local air–sea interactions, and lacks a basinwide anomaly structure. In addition, Type-2 SST variability exhibits a strong connection to the subtropics of both hemispheres, particularly the Northern Hemisphere. Type-2 SST anomalies appear first in the northeastern subtropical Pacific and later spread toward the central equatorial Pacific, being generated in both regions by anomalous surface heat flux forcing associated with wind anomalies. The SST anomalies undergo rapid intensification in the central equatorial Pacific through ocean advection processes, and eventually decay as a result of surface heat flux damping and zonal advection. The southward spreading of trade wind anomalies within the northeastern subtropics-to-central tropics pathway of Type-2 variability is associated with intensity variations of the subtropical high. Type-2 variability is found to become stronger after 1990, associated with a concurrent increase in the subtropical variability. It is concluded that Type-2 interannual variability represents a subtropical-excited phenomenon that is different from the conventional ENSO Type-1 variability.


2018 ◽  
Vol 31 (24) ◽  
pp. 10123-10139 ◽  
Author(s):  
Chuan-Yang Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka

El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.


2014 ◽  
Vol 28 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Laura M. Ciasto ◽  
Graham R. Simpkins ◽  
Matthew H. England

Abstract Teleconnections from tropical Pacific sea surface temperature (SST) anomalies to the high-latitude Southern Hemisphere (SH) are examined using observations and reanalysis. Analysis of tropical Pacific SST anomalies is conducted separately for the central Pacific (CP) and eastern Pacific (EP) regions. During the austral cold season, extratropical SH atmospheric Rossby wave train patterns are observed in association with both EP and CP SST variability. The primary difference between the patterns is the westward displacement of the CP-related atmospheric anomalies, consistent with the westward elongation of CP-related convective SST required for upper-level divergence and Rossby wave generation. Consequently, CP-related patterns of SH SST, Antarctic sea ice, and temperature anomalies also exhibit a westward displacement, but otherwise, the cold season extratropical SH teleconnections are largely similar. During the warm season, however, extratropical SH teleconnections associated with tropical CP and EP SST anomalies differ substantially. EP SST variability is linked to largely zonally symmetric structures in the extratropical atmospheric circulation, which projects onto the southern annular mode (SAM), and is strongly related to the SH temperature and sea ice fields. In contrast, CP SST variability is only weakly related to the SH atmospheric circulation, temperature, or sea ice fields and no longer exhibits any clear association with the SAM. One hypothesized mechanism suggests that the relatively weak CP-related SST anomalies are not able to substantially impact the background flow of the subtropical jet and its subsequent interaction with equatorward-propagating waves associated with variability in the SAM. However, there is currently no widely established mechanism that links tropical Pacific SST anomalies to the SAM.


2019 ◽  
Vol 32 (21) ◽  
pp. 7575-7594 ◽  
Author(s):  
Bo Sun ◽  
Huijun Wang ◽  
Botao Zhou

Abstract This study examined the interdecadal variations in the relationship between the East Asian water vapor transport (WVT) and the central and eastern tropical Pacific (CETP) sea surface temperatures (SSTs) in January during 1951–2018, focusing on the meridional WVT over East Asia, which is critical for the East Asian winter precipitation. The results indicate that before the 1980s, an increased southerly WVT over East Asia was generally associated with warm SST anomalies in the CETP during January, whereas, after the mid-1980s, an increased southerly WVT over East Asia was mostly associated with cold SST anomalies in the central tropical Pacific during January. The underlying mechanisms are discussed based on a comparison on the climate anomalies associated with the East Asian meridional WVT between the periods of 1951–79 and 1986–2018. During 1951–79, the meridional WVT over East Asia was mainly modulated by the Pacific–East Asian (PEA) teleconnection, which would induce an anomalous southerly WVT over East Asia corresponding to warm SST anomalies in the CETP. Whereas, during 1986–2018, the connection between the PEA teleconnection and the East Asian meridional WVT was weakened. The connection among the CETP SSTs, the anomalous zonal circulation over the North Pacific, and the East Asian meridional WVT was enhanced. Additionally, the connection among the CETP SSTs, the circumglobal teleconnection in the Northern Hemisphere, and the East Asian meridional WVT was enhanced. The above two enhanced connections opposed the effect of the PEA teleconnection and would induce an anomalous southerly WVT over East Asia corresponding to cold SST anomalies in the central tropical Pacific.


2005 ◽  
Vol 18 (13) ◽  
pp. 2344-2360 ◽  
Author(s):  
Jing-Jia Luo ◽  
Sebastien Masson ◽  
Erich Roeckner ◽  
Gurvan Madec ◽  
Toshio Yamagata

Abstract The cold tongue in the tropical Pacific extends too far west in most current ocean–atmosphere coupled GCMs (CGCMs). This bias also exists in the relatively high-resolution SINTEX-F CGCM despite its remarkable performance of simulating ENSO variations. In terms of the importance of air–sea interactions to the climatology formation in the tropical Pacific, several sensitivity experiments with improved coupling physics have been performed in order to reduce the cold-tongue bias in CGCMs. By allowing for momentum transfer of the ocean surface current to the atmosphere [full coupled simulation (FCPL)] or merely reducing the wind stress by taking the surface current into account in the bulk formula [semicoupled simulation (semi-CPL)], the warm-pool/cold-tongue structure in the equatorial Pacific is simulated better than that of the control simulation (CTL) in which the movement of the ocean surface is ignored for wind stress calculation. The reduced surface zonal current and vertical entrainment owing to the reduced easterly wind stress tend to produce a warmer sea surface temperature (SST) in the western equatorial Pacific. Consequently, the dry bias there is much reduced. The warming tendency of the SST in the eastern Pacific, however, is largely suppressed by isopycnal diffusion and meridional advection of colder SST from south of the equator due to enhanced coastal upwelling near Peru. The ENSO signal in the western Pacific and its global teleconnection in the North Pacific are simulated more realistically. The approach as adopted in the FCPL run is able to generate a correct zonal SST slope and efficiently reduce the cold-tongue bias in the equatorial Pacific. The surface easterly wind itself in the FCPL run is weakened, reducing the easterly wind stress further. This is related with a weakened zonal Walker cell in the atmospheric boundary layer over the eastern Pacific and a new global angular momentum balance of the atmosphere associated with reduced westerly wind stress over the southern oceans.


2013 ◽  
Vol 26 (20) ◽  
pp. 8126-8138 ◽  
Author(s):  
Takuya Hasegawa ◽  
Kentaro Ando ◽  
Iwao Ueki ◽  
Keisuke Mizuno ◽  
Shigeki Hosoda

Abstract Upper-ocean salinity variation in the tropical Pacific is investigated during the 2000s, when Triangle Trans-Ocean Buoy Network (TRITON) buoys and Argo floats were deployed and more salinity data were observed than in previous periods. This study focuses on upper-ocean salinity variability during the warming period of El Niño–Southern Oscillation (ENSO)-like quasi-decadal (QD)-scale sea surface temperature anomalies over the central equatorial Pacific (January 2002–December 2005; hereafter “warm QD phase”). It is shown that strong negative salinity anomalies occur in the western tropical Pacific and the off-equatorial Pacific in the upper ocean at depths less than 80 m, showing a horseshoe-like pattern centered at the western tropical Pacific during the warm QD phase. TRITON mooring buoy data in the western equatorial Pacific show that low-salinity and high-temperature water could be transported eastward from the western equatorial Pacific to the central equatorial Pacific during the warm QD phase. Similar patterns, but with the opposite sign of salinity anomalies, appear in the cold QD phase during January 2007–December 2009 with negative sea surface temperature anomalies over the central equatorial Pacific. It is suggested that effects from zonal salinity advection and precipitation could contribute to the generation of the salinity variations in the western equatorial Pacific for QD phases during the 2000s. On the other hand, the contribution of meridional salinity advection is much less than that of zonal salinity advection. In addition, El Niño Modoki and La Niña events could affect salinity changes for warm and cold QD phases via interannual-scale zonal salinity advection variations in the western equatorial Pacific during the 2000s.


2014 ◽  
Vol 27 (7) ◽  
pp. 2699-2713 ◽  
Author(s):  
Bradley M. Hegyi ◽  
Yi Deng ◽  
Robert X. Black ◽  
Renjun Zhou

Abstract Perpetual winter simulations using the NCAR Whole Atmosphere Community Climate Model (WACCM) are conducted to document the differences of the initial transient response of the boreal winter Northern Hemisphere stratospheric polar vortex to central (CPW) and eastern Pacific warming (EPW) events. Idealized patches of positive sea surface temperature (SST) anomalies are superimposed onto a climatological SST field to mimic canonical CPW and EPW forcings. A 20-member ensemble was created by varying initial atmospheric conditions for both CPW and EPW cases. In the ensemble average, the vortex weakens under both CPW and EPW forcing, indicated by a negative zonal mean zonal wind tendency. This tendency is mainly tied to changes in the eddy-driven mean meridional circulation (MMC). A negative anomaly in the eddy momentum flux convergence also plays a secondary role in the weakening. The vortex response, however, differs dramatically among individual ensemble members. A few ensemble members exhibit initial vortex strengthening although weaker in magnitude and shorter in duration than the initial weakening in the ensemble average. The initial state and the subsequent internal variation of the extratropical atmosphere is at least as important as the type of SST forcing in determining the transient response of the stratospheric polar vortex. Interactions between the internal variability of the vortex and SST-driven wave anomalies ultimately determine the nature of the initial transient response of the vortex to EPW and CPW forcing. This sensitivity to the initial atmospheric state has implications for understanding medium-range forecasts of the extratropical atmospheric response to emerging tropical SST anomalies, particularly over high-latitude regions.


2012 ◽  
Vol 25 (14) ◽  
pp. 5047-5056 ◽  
Author(s):  
Laure Zanna

Abstract An empirical statistical model is constructed to assess the forecast skill and the linear predictability of Atlantic Ocean sea surface temperature (SST) variability. Linear inverse modeling (LIM) is used to build a dynamically based statistical model using observed Atlantic SST anomalies between latitudes 20°S and 66°N from 1870 to 2009. LIM allows one to fit a multivariate red-noise model to the observed annually averaged SST anomalies and to test it. Forecast skill is assessed and is shown to be O(3–5 yr). After a few years, the skill is greatly reduced, especially in the subpolar region. In the stable dynamical system determined by LIM, skill of annual average SST anomalies arises from four damped eigenmodes. The four eigenmodes are shown to be relevant in particular for the optimal growth events of SST variance, with a pattern reminiscent of the low-frequency mode of variability, and in general for the predictability and variability of Atlantic SSTs on interannual time scales. LIM might serve as a useful benchmark for interannual and decadal forecasts of SST anomalies that are based on numerical models.


2013 ◽  
Vol 9 (1) ◽  
pp. 837-890 ◽  
Author(s):  
Y. Milker ◽  
R. Rachmayani ◽  
M. Weinkauf ◽  
M. Prange ◽  
M. Raitzsch ◽  
...  

Abstract. The Marine Isotope Stage (MIS) 11 (424–374 ka) was characterized by a protracted deglaciation and an unusually long climatic optimum. It remains unclear to what degree the climate development during this interglacial reflects the unusually weak orbital forcing or greenhouse gas trends. Previously, arguments about the duration and timing of the MIS11 climatic optimum and about the pace of the deglacial warming were based on a small number of key records, which appear to show regional differences. In order to obtain a global signal of climate evolution during MIS11, we compiled a database of 78 sea surface temperature (SST) records from 57 sites spanning MIS11, aligned these individually on the basis of benthic (N = 28) or planktonic (N = 31) stable oxygen isotope curves to a common time-frame and subjected 48 of them to an Empirical Orthogonal Function (EOF) analysis. The analysis revealed a high commonality among all records, with the principal SST trend explaining almost 49% of the variability. This trend indicates that on the global scale, the surface ocean underwent rapid deglacial warming during Termination V, in pace with carbon dioxide rise, followed by a broad SST optimum centered at ~ 410 kyr. The second EOF, which explained 19% of the variability, revealed the existence of a different SST trend, characterized by a delayed onset of the temperature optimum during MIS11 at ~ 398 kyr, followed by a prolonged warm period lasting beyond 380 kyr. This trend is most consistently manifested in the mid-latitude North Atlantic and Mediterranean Sea and is here attributed to the strength of the Atlantic meridional overturning circulation. A sensitivity analysis indicates that these results are robust to record selection and to age-model uncertainties of up to 3–6 kyr, but more sensitive to SST seasonal attribution and SST uncertainties > 1 °C. In order to assess the effect of orbital forcing on MIS11 SST trends, the annual and seasonal SST anomalies recorded in a total of 74 proxy records were compared with CCSM3 (Community Climate System Model, version 3) runs for three time slices representing orbital configuration extremes during the peak interglacial of MIS11. The modeled SST anomalies are characterized by a significantly lower variance compared to the reconstructions. Nevertheless, significant correlations between proxy and model data are found in comparisons on the seasonal basis, indicating that the model captures part of the long-term variability induced by astronomical forcing, which appears to have left a detectable signature in SST trends.


Sign in / Sign up

Export Citation Format

Share Document