scholarly journals Transformation of internal solitary waves at the "deep" and "shallow" shelf: satellite observations and laboratory experiment

2013 ◽  
Vol 20 (5) ◽  
pp. 743-757 ◽  
Author(s):  
O. D. Shishkina ◽  
J. K. Sveen ◽  
J. Grue

Abstract. An interaction of internal solitary waves with the shelf edge in the time periods related to the presence of a pronounced seasonal pycnocline in the Red Sea and in the Alboran Sea is analysed via satellite photos and SAR images. Laboratory data on transformation of a solitary wave of depression while passing along the transverse bottom step were obtained in a tank with a two-layer stratified fluid. The certain difference between two characteristic types of hydrophysical phenomena was revealed both in the field observations and in experiments. The hydrological conditions for these two processes were named the "deep" and the "shallow" shelf respectively. The first one provides the generation of the secondary periodic short internal waves – "runaway" edge waves – due to change in the polarity of a part of a soliton approaching the shelf normally. Another one causes a periodic shear flow in the upper quasi-homogeneous water layer with the period of incident solitary wave. The strength of the revealed mechanisms depends on the thickness of the water layer between the pycnocline and the shelf bottom as well as on the amplitude of the incident solitary wave.

2020 ◽  
Author(s):  
Kateryna Terletska ◽  
Tatiana Talipova ◽  
Roger Grimshaw ◽  
Zihua Liu ◽  
Vladimir Maderіch

<p>Transformation of the first mode internal solitary wave over the underwater bottom step in three-layer fluid is studied numerically. In the three layer flow two modes (the first and the second) of the internal waves are existed. It is known that interaction of the first mode internal solitary wave with an underwater obstacle is the mechanisms of second-mode internal solitary waves generation. Different scenarios of transformation are realized under different wave characteristics: wave amplitude, position of the step and thickness of the layers as is the two layer case [1]. Formation of the second mode internal solitary waves during interaction of the first mode internal solitary waves occurs only for special range of wave characteristics and thickness of the layers that was defined in this investigation. The second mode internal solitary waves appear as in the reflected wave field as well as in the transmitted wave field. Transfer of energy from incident mode one wave into reflected and transmitted waves (the first and the second modes) during transformation is also studied. Dependence of the amplitudes of generated solitary waves (transmitted and reflected) from amplitude of the incident wave is obtained.  Comparison of numerical results (reflected and transmitted coefficients) with the theoretical calculations [2] shows good agreement in the range of wave characteristics that corresponds to the weak interaction.  </p><p> </p><p>1. Talipova T., Terletska K., Maderich V., Brovchenko I., Pelinovsky E., Jung K.T., Grimshaw R. Internal solitary wave transformation over a bottom step: loss of energy. Phys. Fluids. 2013. № 25. 032110; doi:10.1063/1.4797455</p><p>2.    Liu Z., Grimshaw R. and Johnson E.  The interaction of a mode-1 internal solitary wave with a step and the generation of mode-2 waves Geophysical & Astrophysical Fluid Dynamics 2019, N 4, V 113, https://doi.org/10.1080/03091929.2019.1636046</p><p> </p>


2009 ◽  
Vol 629 ◽  
pp. 73-85 ◽  
Author(s):  
WOOYOUNG CHOI ◽  
RICARDO BARROS ◽  
TAE-CHANG JO

The strongly nonlinear long-wave model for large amplitude internal waves in a two-layer system is regularized to eliminate shear instability due to the wave-induced velocity jump across the interface. The model is written in terms of the horizontal velocities evaluated at the top and bottom boundaries instead of the depth-averaged velocities, and it is shown through local stability analysis that internal solitary waves are locally stable to perturbations of arbitrary wavelengths if the wave amplitudes are smaller than a critical value. For a wide range of depth and density ratios pertinent to oceanic conditions, the critical wave amplitude is close to the maximum wave amplitude and the regularized model is therefore expected to be applicable to the strongly nonlinear regime. The regularized model is solved numerically using a finite-difference method and its numerical solutions support the results of our linear stability analysis. It is also shown that the solitary wave solution of the regularized model, found numerically using a time-dependent numerical model, is close to the solitary wave solution of the original model, confirming that the two models are asymptotically equivalent.


2021 ◽  
Author(s):  
Yi Gong ◽  
Haibin Song ◽  
Zhongxiang Zhao ◽  
Yongxian Guan ◽  
Kun Zhang ◽  
...  

Abstract. Shoaling internal solitary waves near the Dongsha Atoll in the South China Sea dissipate their energy and thus enhance diapycnal mixing, which have an important impact on the oceanic environment and primary productivity. The enhanced diapycnal mixing is patchy and instantaneous. Evaluating its spatiotemporal distribution requires comprehensive observation data. Fortunately, seismic oceanography meets the requirements, thanks to its high spatial resolution and large spatial range. In this paper, we studied three internal solitary waves in reversing polarity near the Dongsha Atoll, and calculated the spatial distribution of resultant diapycnal diffusivity. Our results show that the average diffusivities along three survey lines are two orders of magnitude larger than the open-ocean value. The average diffusivity in the internal solitary wave with reversing polarity is three times that of the non-polarity-reversal region. The diapycnal diffusivity is higher at the front of one internal solitary wave, and gradually decreases from shallow to deep water in the vertical direction. Our results also indicates that (1) the enhanced diapycnal diffusivity is related to reflection seismic events; (2) convective instability and shear instability may both contribute to the enhanced diapycnal mixing in the polarity-reversing process; and (3) the difference between our and previous diffusivity profiles is about 2–3 orders of magnitude, but their vertical distribution is almost the same.


2009 ◽  
Vol 16 (1) ◽  
pp. 33-42 ◽  
Author(s):  
V. Maderich ◽  
T. Talipova ◽  
R. Grimshaw ◽  
E. Pelinovsky ◽  
B. H. Choi ◽  
...  

Abstract. In this paper we study the transformation of an internal solitary wave at a bottom step in the framework of two-layer flow, for the case when the interface lies close to the bottom, and so the solitary waves are elevation waves. The outcome is the formation of solitary waves and dispersive wave trains in both the reflected and transmitted fields. We use a two-pronged approach, based on numerical simulations of the fully nonlinear equations using a version of the Princeton Ocean Model on the one hand, and a theoretical and numerical study of the Gardner equation on the other hand. In the numerical experiments, the ratio of the initial wave amplitude to the layer thickness is varied up one-half, and nonlinear effects are then essential. In general, the characteristics of the generated solitary waves obtained in the fully nonlinear simulations are in reasonable agreement with the predictions of our theoretical model, which is based on matching linear shallow-water theory in the vicinity of a step with solutions of the Gardner equation for waves far from the step.


2014 ◽  
Vol 44 (4) ◽  
pp. 1116-1132 ◽  
Author(s):  
Roger Grimshaw ◽  
Chuncheng Guo ◽  
Karl Helfrich ◽  
Vasiliy Vlasenko

Abstract Internal solitary waves commonly observed in the coastal ocean are often modeled by a nonlinear evolution equation of the Korteweg–de Vries type. Because these waves often propagate for long distances over several inertial periods, the effect of Earth’s background rotation is potentially significant. The relevant extension of the Kortweg–de Vries is then the Ostrovsky equation, which for internal waves does not support a steady solitary wave solution. Recent studies using a combination of asymptotic theory, numerical simulations, and laboratory experiments have shown that the long time effect of rotation is the destruction of the initial internal solitary wave by the radiation of small-amplitude inertia–gravity waves, and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. However, in the ocean, internal solitary waves are often propagating over variable topography, and this alone can cause quite dramatic deformation and transformation of an internal solitary wave. Hence, the combined effects of background rotation and variable topography are examined. Then the Ostrovsky equation is replaced by a variable coefficient Ostrovsky equation whose coefficients depend explicitly on the spatial coordinate. Some numerical simulations of this equation, together with analogous simulations using the Massachusetts Institute of Technology General Circulation Model (MITgcm), for a certain cross section of the South China Sea are presented. These demonstrate that the combined effect of shoaling and rotation is to induce a secondary trailing wave packet, induced by enhanced radiation from the leading wave.


2020 ◽  
Author(s):  
Morgane Dessert ◽  
Xavier Carton ◽  
Jean-Marc Le Caillec ◽  
Christophe Messager ◽  
Lucie Bordois ◽  
...  

<p>Internal Solitary Waves (ISW) are particularly large amplitude internal waves which may propagate in the ocean over tens of kilometres while preserving their shape via a balance between non-linearity and non-hydrostatics effects. These waves may have wide impacts on the ocean dynamics (mixing or inducing vertical currents) and on human activities (fisheries, underwater acoustic or offshore activities).</p><p>ISW can be detected on satellite scenes. For instance, they may induce surface currents and thus enhance or damp the capillary waves at the sea surface which signed on the Synthetic Aperture Radar (SAR) scenes. On SAR images, ISW appear as successions of bright and dark bands over a grey background. From these images, the amplitude of the ISW and the depth of the pycnocline may be inferred using the Korteweg-DeVries (KdV) theoretical framework. Several SAR images interpretation methods have been developed based on curve fitting or Peak-to-Peak methods (Zheng et al., 2001) or parametric autoregressive techniques (Le Caillec, 2006). The KdV theory relies on the weakly nonlinear approximation and a Two-Layers Ocean Model (TLOM).</p><p>In Gibraltar Strait, the tidal dynamic leads to strong periodic currents. The exchanges between the Mediterranean sea and the Atlantic ocean occurred according a two layer scheme that maintains large density gradient located at the interface between Atlantic and Mediterranean Waters.  At some tidal outflow, an internal hydraulic jump is formed above Camarinal sill, when the tidal ouflow slackens, it is released and leads to the formation of eastward propagating internal solitary waves. The site is thus considered as an ISW “hot-spot”. Part of the energy carried by these waves propagates eastward into the Alborean Sea, although the stratification may differ from the TLOM.</p><p>If the stratification differs from TLOM, a given surface signature of ISW could match to several configurations of the pycnocline geometry and ISW amplitude, depending on the associated stratification.</p><p>In order to assess the impact of the stratification on the surface signature of the ISW, we implemented an idealized 2DV (one vertical and one longitudinal directions) configuration with the Coastal and Regional Ocean modelling COmmunity model (CROCO) using its non-Boussinesq (pseudo compressible) capability. The bathymetry and the density profile are inspired from oceanic observations. The tidal forcing is simplified to a pure monochromatic M2 tide.</p><p>First, simulations are initialized with a two-layer density profile and different pycnocline depths. Then, we added continuous stratification in each of the two (surface/bottom) layers. We tested also several tidal regimes in order to represent the various strengths between the neap and spring tide. SAR images interpretation techniques are then tested in each configurations. Pycnocline depths and ISW amplitudes computed from SAR methods are then compared with the ones initially simulated by the CROCO model.</p><p> </p><p>Le Caillec, J.-M., 2006. Study of the SAR signature of internal waves by nonlinear parametric autoregressive models. IEEE Trans. Geosci. Remote Sens. 44, 148–158. https://doi.org/10.1109/TGRS.2005.859954</p><p>Zheng, Q., Yuan, Y., Klemas, V., Yan, X.-H., 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. J. Geophys. Res. Oceans 106, 31415–31423. https://doi.org/10.1029/2000JC000726</p>


2021 ◽  
Author(s):  
Haibin Song ◽  
Yi Gong ◽  
Yongxian Guan ◽  
Wenhao Fan ◽  
Yunyan Kuang

<p>In the study of shoaling internal solitary waves, the observation and research on the internal fine structure and the effect of the topography are still insufficient. We try to make up for such insufficiency by seismic oceanography method. A first-mode depression internal solitary wave was observed propagating on the continental slope in the northeast South China Sea near Dongsha Atoll. We used common offset gathers (COGs) to obtain a series of images of this internal solitary wave that evolved over time, and studied the changes in internal fine structure by analyzing the seismic events in COG migrated sections. We found that the seismic events were broken during the shoaling, which was caused by the instability induced by internal solitary wave. We picked six events which represent six waveform and analyzed their evolution. It was found that the change in shape of waveform at different depths is different. The waveform in deep water deforms before that in shallow water, and the waveform in shallow water deforms to a greater degree. In addition, we also counted four parameters of phase velocity, amplitude, wavelength, and slopes of front and rear during the shoaling. The results show that the phase velocity and amplitude of waveform in shallow water increases, the wavelength decreases, and the slope of rear gradually becomes larger than that of the front. We have compared the observed changes with previous study made by numerical simulation.</p>


2010 ◽  
Vol 17 (5) ◽  
pp. 553-568 ◽  
Author(s):  
K. G. Lamb

Abstract. The energetics of internal waves in the presence of a background sheared current is explored via numerical simulations for four different situations based on oceanographic conditions: the nonlinear interaction of two internal solitary waves; an internal solitary wave shoaling through a turning point; internal solitary wave reflection from a sloping boundary and a deep-water internal seiche trapped in a deep basin. In the simulations with variable water depth using the Boussinesq approximation the combination of a background sheared current, bathymetry and a rigid lid results in a change in the total energy of the system due to the work done by a pressure change that is established across the domain. A final simulation of the deep-water internal seiche in which the Boussinesq approximation is not invoked and a diffuse air-water interface is added to the system results in the energy remaining constant because the generation of surface waves prevents the establishment of a net pressure increase across the domain. The difference in the perturbation energy in the Boussinesq and non-Boussinesq simulations is accounted for by the surface waves.


Author(s):  
D. P. Bennett ◽  
R. W. Brown ◽  
S. E. Stansfield ◽  
J. D. Stroughair ◽  
J. L. Bona

A theory is developed relating to the stability of solitary-wave solutions of the so-called Benjamin-Ono equation. This equation was derived by Benjamin (5) as a model for the propagation of internal waves in an incompressible non-diffusive heterogeneous fluid for which the density is non-constant only within a layer whose thickness is much smaller than the total depth. In his article, Benjamin wrote in closed form the one-parameter family of solitary-wave solutions of his model equation whose stability will be the focus of attention presently.


Sign in / Sign up

Export Citation Format

Share Document