scholarly journals Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics

2018 ◽  
Vol 25 (1) ◽  
pp. 125-127
Author(s):  
Ana M. Mancho ◽  
Emilio Hernández-García ◽  
Cristóbal López ◽  
Antonio Turiel ◽  
Stephen Wiggins ◽  
...  

Abstract. The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.

Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 49
Author(s):  
Moussa Ndour ◽  
Kathrin Padberg-Gehle ◽  
Martin Rasmussen

Lagrangian coherent sets are known to crucially determine transport and mixing processes in non-autonomous flows. Prominent examples include vortices and jets in geophysical fluid flows. Coherent sets can be identified computationally by a probabilistic transfer-operator-based approach within a set-oriented numerical framework. Here, we study sudden changes in flow patterns that correspond to bifurcations of coherent sets. Significant changes in the spectral properties of a numerical transfer operator are heuristically related to critical events in the phase space of a time-dependent system. The transfer operator approach is applied to different example systems of increasing complexity. In particular, we study the 2002 splitting event of the Antarctic polar vortex.


2021 ◽  
Vol 49 (2) ◽  
pp. 173-175
Author(s):  
G. M. Reznik

On June 12, 2021, at the age of 90, a prominent Russian oceanographer, one of the founders of modern geophysical fluid dynamics, professor, Doctor of Physical and Mathematical Sciences Vladimir Moiseevich Kamenkovich passed away.


2017 ◽  
Author(s):  
Jezabel Curbelo ◽  
Victor J. García-Garrido ◽  
Carlos R. Mechoso ◽  
Ana M. Mancho ◽  
Stephen Wiggins ◽  
...  

Abstract. The present paper introduces an algorithm for the visualization, analysis and verification of transport and mixing processes in three-dimensional atmospheric flows. This algorithm is based on the methodology of Lagrangian descriptors (LDs), a technique from Dynamical Systems Theory. The algorithm is applied to reanalysis data in order to illustrate the evolution of the flow above Antarctica during a period of rapid changes in the southern spring of 1979. The evolution of Lagrangian coherent structures is discussed and connections with the stratosphere is examined. The results suggest that the cyclonic stratospheric polar vortex during late winter appears to extend down to the troposphere. The results are also indicative of features related to invariante manifolds that can act as deep vertical barriers to transport between vortices.


2006 ◽  
Author(s):  
John A. Whitehead ◽  
Neil J. Balmforth ◽  
Philip J. Morrison

2008 ◽  
Author(s):  
John A. Whitehead ◽  
Neil J. Balmforth ◽  
Philip J. Morrison

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1137
Author(s):  
Jin-Hyuk Kim ◽  
Sung-Min Kim ◽  
Minsuk Choi ◽  
Lei Tan ◽  
Bin Huang ◽  
...  

The demand for computational fluid dynamics (CFD)-based numerical techniques is increasing rapidly with the development of the computing power system [...]


Sign in / Sign up

Export Citation Format

Share Document