scholarly journals Insights on the three-dimensional Lagrangian geometry of the Antarctic Polar Vortex

2017 ◽  
Author(s):  
Jezabel Curbelo ◽  
Victor J. García-Garrido ◽  
Carlos R. Mechoso ◽  
Ana M. Mancho ◽  
Stephen Wiggins ◽  
...  

Abstract. The present paper introduces an algorithm for the visualization, analysis and verification of transport and mixing processes in three-dimensional atmospheric flows. This algorithm is based on the methodology of Lagrangian descriptors (LDs), a technique from Dynamical Systems Theory. The algorithm is applied to reanalysis data in order to illustrate the evolution of the flow above Antarctica during a period of rapid changes in the southern spring of 1979. The evolution of Lagrangian coherent structures is discussed and connections with the stratosphere is examined. The results suggest that the cyclonic stratospheric polar vortex during late winter appears to extend down to the troposphere. The results are also indicative of features related to invariante manifolds that can act as deep vertical barriers to transport between vortices.

2017 ◽  
Vol 24 (3) ◽  
pp. 379-392 ◽  
Author(s):  
Jezabel Curbelo ◽  
Víctor José García-Garrido ◽  
Carlos Roberto Mechoso ◽  
Ana Maria Mancho ◽  
Stephen Wiggins ◽  
...  

Abstract. In this paper we study the three-dimensional (3-D) Lagrangian structures in the stratospheric polar vortex (SPV) above Antarctica. We analyse and visualize these structures using Lagrangian descriptor function M. The procedure for calculation with reanalysis data is explained. Benchmarks are computed and analysed that allow us to compare 2-D and 3-D aspects of Lagrangian transport. Dynamical systems concepts appropriate to 3-D, such as normally hyperbolic invariant curves, are discussed and applied. In order to illustrate our approach we select an interval of time in which the SPV is relatively undisturbed (August 1979) and an interval of rapid SPV changes (October 1979). Our results provide new insights into the Lagrangian structure of the vertical extension of the stratospheric polar vortex and its evolution. Our results also show complex Lagrangian patterns indicative of strong mixing processes in the upper troposphere and lower stratosphere. Finally, during the transition to summer in the late spring, we illustrate the vertical structure of two counterrotating vortices, one the polar and the other an emerging one, and the invariant separatrix that divides them.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 49
Author(s):  
Moussa Ndour ◽  
Kathrin Padberg-Gehle ◽  
Martin Rasmussen

Lagrangian coherent sets are known to crucially determine transport and mixing processes in non-autonomous flows. Prominent examples include vortices and jets in geophysical fluid flows. Coherent sets can be identified computationally by a probabilistic transfer-operator-based approach within a set-oriented numerical framework. Here, we study sudden changes in flow patterns that correspond to bifurcations of coherent sets. Significant changes in the spectral properties of a numerical transfer operator are heuristically related to critical events in the phase space of a time-dependent system. The transfer operator approach is applied to different example systems of increasing complexity. In particular, we study the 2002 splitting event of the Antarctic polar vortex.


2017 ◽  
Author(s):  
Kathrin Padberg-Gehle ◽  
Christiane Schneide

Abstract. Transport and mixing processes in fluid flows are crucially influenced by coherent structures and the characterization of these Lagrangian objects is a topic of intense current research. While established mathematical approaches such as variational or transfer operator based schemes require full knowledge of the flow field or at least high resolution trajectory data, this information may not be available in applications. Recently, different computational methods have been proposed to identify coherent behavior in flows directly from Lagrangian trajectory data. In this context, spatio-temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we consider an unweighted, undirected network, where Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph concepts are then employed to analyze the resulting network. In particular, local network measures such as the node degree serve as indicators of highly mixing regions, whereas spectral graph partitioning schemes allow us to extract coherent sets. The proposed methodology is very fast to run and we demonstrate its applicability in two geophysical flows – the Bickley jet as well as the antarctic stratospheric polar vortex.


2017 ◽  
Vol 24 (4) ◽  
pp. 661-671 ◽  
Author(s):  
Kathrin Padberg-Gehle ◽  
Christiane Schneide

Abstract. Transport and mixing processes in fluid flows are crucially influenced by coherent structures and the characterization of these Lagrangian objects is a topic of intense current research. While established mathematical approaches such as variational methods or transfer-operator-based schemes require full knowledge of the flow field or at least high-resolution trajectory data, this information may not be available in applications. Recently, different computational methods have been proposed to identify coherent behavior in flows directly from Lagrangian trajectory data, that is, numerical or measured time series of particle positions in a fluid flow. In this context, spatio-temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we consider an unweighted, undirected network, where Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph concepts are then employed to analyze the resulting network. In particular, local network measures such as the node degree, the average degree of neighboring nodes, and the clustering coefficient serve as indicators of highly mixing regions, whereas spectral graph partitioning schemes allow us to extract coherent sets. The proposed methodology is very fast to run and we demonstrate its applicability in two geophysical flows – the Bickley jet as well as the Antarctic stratospheric polar vortex.


2016 ◽  
Author(s):  
Victor José García-Garrido ◽  
Jezabel Curbelo ◽  
Carlos Roberto Mechoso ◽  
Ana María Mancho ◽  
Stephen Wiggins

Abstract. In this work we study the Lagrangian footprint of the planetary waves present in the Southern Hemisphere stratosphere during the Sudden Stratospheric Warming event that took place during September 2002. The Lagrangian analysis of the transport and mixing processes is carried out in the framework of dynamical systems theory, by means of a Lagrangian descriptor. We seek to describe the Lagrangian skeleton of geometrical structures that lead to filamentation phenomena and the breakdown of the polar vortex, and establish its relation with how planetary waves interact. Our approach is based on the construction of a simple kinematic model, inspired by the Fourier decomposition of the geopotential field. We show that this model is capable of reproducing the key Lagrangian features present on the reanalysis data such as the formation of filaments eroding the stratospheric polar vortex and the breakdown of the vortex.


2007 ◽  
Vol 64 (4) ◽  
pp. 1267-1283 ◽  
Author(s):  
Charles D. Camp ◽  
Ka-Kit Tung

Abstract A statistical analysis of 51 years of NCEP–NCAR reanalysis data is conducted to isolate the separate effects of the 11-yr solar cycle (SC) and the equatorial quasi-biennial oscillation (QBO) on the Northern Hemisphere (NH) stratosphere in late winter (February–March). In a four-group [SC maximum (SC-max) versus minimum (SC-min) and east-phase versus west-phase QBO] linear discriminant analysis, the state of the westerly phase QBO (wQBO) during SC-min emerges as a distinct least-perturbed (and coldest) state of the stratospheric polar vortex, statistically well separated from the other perturbed states. Relative to this least-perturbed state, the SC-max and easterly QBO (eQBO) each independently provides perturbation and warming as does the combined perturbation of the SC-max–eQBO. All of these results (except the eQBO perturbation) are significant at the 95% confidence level as confirmed by Monte Carlo tests; the eQBO perturbation is marginally significant at the 90% level. This observational result suggests a conceptual change in understanding the interaction between solar cycle and QBO influences: while previous results imply a more substantial interaction, even to the extent that the warming due to SC-max is reversed to cooling by the eQBO, results suggest that the SC-max and eQBO separately warm the polar stratosphere from the least-perturbed state. While previous authors emphasize the importance of segregating the data according to the phase of the QBO, here the same polar warming by the solar cycle is found regardless of the phase of the QBO. The polar temperature is positively correlated with the SC, with a statistically significant zonal mean warming of approximately 4.6 K in the 10–50-hPa layer in the mean and 7.2 K from peak to peak. This magnitude of the warming in winter is too large to be explainable by UV radiation alone. The evidence seems to suggest that the polar warming in NH late winter during SC-max is due to the occurrence of sudden stratospheric warmings (SSWs), as noted previously by other authors. This hypothesis is circumstantially substantiated here by the similarity between the meridional pattern and timing of the warming and cooling observed during the SC-max and the known pattern and timing of SSWs, which has the form of large warming over the pole and small cooling over the midlatitudes during mid- and late winter. The eQBO is also known to precondition the polar vortex for the onset of SSWs, and it has been pointed out by previous authors that SSWs can occur during eQBO at all stages of the solar cycle. The additional perturbation due to SC-max does not double the frequency of occurrence of SSWs induced by the eQBO. This explains why the SC-max/eQBO years are not statistically warmer than either the SC-max/wQBO or SC minimum/eQBO years. The difference between two perturbed (warm) states (e.g., SC-max/eQBO versus SC-min/eQBO or SC-max/eQBO versus SC-max/wQBO), is small (about 0.3–0.4 K) and not statistically significant. It is this small difference between perturbed states, both warmer than the least-perturbed state, that in the past has been interpreted either as a reversal of SC-induced warming or as a reversal of QBO-induced warming.


2015 ◽  
Vol 15 (6) ◽  
pp. 3327-3338 ◽  
Author(s):  
T. Fytterer ◽  
M. G. Mlynczak ◽  
H. Nieder ◽  
K. Pérot ◽  
M. Sinnhuber ◽  
...  

Abstract. Measurements from 2002 to 2011 by three independent satellite instruments, namely MIPAS, SABER, and SMR on board the ENVISAT, TIMED, and Odin satellites are used to investigate the intra-seasonal variability of stratospheric and mesospheric O3 volume mixing ratio (vmr) inside the Antarctic polar vortex due to solar and geomagnetic activity. In this study, we individually analysed the relative O3 vmr variations between maximum and minimum conditions of a number of solar and geomagnetic indices (F10.7 cm solar radio flux, Ap index, ≥ 2 MeV electron flux). The indices are 26-day averages centred at 1 April, 1 May, and 1 June while O3 is based on 26-day running means from 1 April to 1 November at altitudes from 20 to 70 km. During solar quiet time from 2005 to 2010, the composite of all three instruments reveals an apparent negative O3 signal associated to the geomagnetic activity (Ap index) around 1 April, on average reaching amplitudes between −5 and −10% of the respective O3 background. The O3 response exceeds the significance level of 95% and propagates downwards throughout the polar winter from the stratopause down to ~ 25 km. These observed results are in good qualitative agreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes particle impact ionisation.


2017 ◽  
Vol 30 (18) ◽  
pp. 7125-7139 ◽  
Author(s):  
Nicholas J. Byrne ◽  
Theodore G. Shepherd ◽  
Tim Woollings ◽  
R. Alan Plumb

Abstract Statistical models of climate generally regard climate variability as anomalies about a climatological seasonal cycle, which are treated as a stationary stochastic process plus a long-term seasonally dependent trend. However, the climate system has deterministic aspects apart from the climatological seasonal cycle and long-term trends, and the assumption of stationary statistics is only an approximation. The variability of the Southern Hemisphere zonal-mean circulation in the period encompassing late spring and summer is an important climate phenomenon and has been the subject of numerous studies. It is shown here, using reanalysis data, that this variability is rendered highly nonstationary by the organizing influence of the seasonal breakdown of the stratospheric polar vortex, which breaks time symmetry. It is argued that the zonal-mean tropospheric circulation variability during this period is best viewed as interannual variability in the transition between the springtime and summertime regimes induced by variability in the vortex breakdown. In particular, the apparent long-term poleward jet shift during the early-summer season can be more simply understood as a delay in the equatorward shift associated with this regime transition. The implications of such a perspective for various open questions are discussed.


Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2011. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


2008 ◽  
Vol 26 (5) ◽  
pp. 1101-1108 ◽  
Author(s):  
A. V. Grytsai ◽  
O. M. Evtushevsky ◽  
G. P. Milinevsky

Abstract. Anomalies in the Antarctic total ozone and amplitudes of the quasi-stationary planetary waves in the lower stratosphere temperature during the winter and spring of 1988 and 2002 have been compared. Westward displacement of the quasi-stationary wave (QSW) extremes by 50°–70° relative to the preceding years of the strong stratospheric polar vortex in 1987 and 2001, respectively, was observed. A dependence of the quasi-stationary wave ridge and trough positions on the strength of the westerly zonal wind in the lower stratosphere is shown. Comparison of the QSW amplitude in the lower stratosphere temperature in July and August shows that the amplitude distribution with latitude in August could be considered as a possible indication of the future anomalous warming in Antarctic spring. In August 2002, the QSW amplitude of 10 K at the edge region of the polar vortex (60° S–65° S) preceded the major warming in September, whereas in August 1988, the highest 7 K amplitude at 55° S preceded the large warming in the next months. These results suggest that the peak value of the lower stratosphere temperature QSW amplitude and the peak latitudinal position in late winter can influence the southern polar vortex strength in spring.


Sign in / Sign up

Export Citation Format

Share Document