scholarly journals Statistical post-processing of ensemble forecasts of the height of new snow

2019 ◽  
Vol 26 (3) ◽  
pp. 339-357 ◽  
Author(s):  
Jari-Pekka Nousu ◽  
Matthieu Lafaysse ◽  
Matthieu Vernay ◽  
Joseph Bellier ◽  
Guillaume Evin ◽  
...  

Abstract. Forecasting the height of new snow (HN) is crucial for avalanche hazard forecasting, road viability, ski resort management and tourism attractiveness. Météo-France operates the PEARP-S2M probabilistic forecasting system, including 35 members of the PEARP Numerical Weather Prediction system, where the SAFRAN downscaling tool refines the elevation resolution and the Crocus snowpack model represents the main physical processes in the snowpack. It provides better HN forecasts than direct NWP diagnostics but exhibits significant biases and underdispersion. We applied a statistical post-processing to these ensemble forecasts, based on non-homogeneous regression with a censored shifted Gamma distribution. Observations come from manual measurements of 24 h HN in the French Alps and Pyrenees. The calibration is tested at the station scale and the massif scale (i.e. aggregating different stations over areas of 1000 km2). Compared to the raw forecasts, similar improvements are obtained for both spatial scales. Therefore, the post-processing can be applied at any point of the massifs. Two training datasets are tested: (1) a 22-year homogeneous reforecast for which the NWP model resolution and physical options are identical to the operational system but without the same initial perturbations; (2) 3-year real-time forecasts with a heterogeneous model configuration but the same perturbation methods. The impact of the training dataset depends on lead time and on the evaluation criteria. The long-term reforecast improves the reliability of severe snowfall but leads to overdispersion due to the discrepancy in real-time perturbations. Thus, the development of reliable automatic forecasting products of HN needs long reforecasts as homogeneous as possible with the operational systems.

2019 ◽  
Author(s):  
Jari-Pekka Nousu ◽  
Matthieu Lafaysse ◽  
Matthieu Vernay ◽  
Joseph Bellier ◽  
Guillaume Evin ◽  
...  

Abstract. Forecasting the height of new snow (HN) is crucial for avalanche hazard forecasting, roads viability, ski resorts management and tourism attractiveness. Meteo-France operates the PEARP-S2M probabilistic forecasting system including 35 members of the PEARP Numerical Weather Prediction system, where the SAFRAN downscaling tool is refining the elevation resolution, and the Crocus snowpack model is representing the main physical processes in the snowpack. It provides better HN forecasts than direct NWP diagnostics but exhibits significant biases and underdispersion. We applied a statistical post-processing to these ensemble forecasts, based on Nonhomogeneous Regression with a censored shifted Gamma distribution. Observations come from manual measurements of 24-hour HN in French Alps and Pyrenees. The calibration is tested at the station-scale and the massif-scale (i.e. aggregating different stations over areas of 1000 km2). Compared to the raw forecasts, similar improvements are obtained for both spatial scales. Therefore, the post-processing can be applied at any point of the massifs. Two training datasets are tested: (1) a 22-year homogeneous reforecast for which the NWP model resolution and physical options are identical to the operational system but without the same initial perturbations; (2) 3-year real-time forecasts with a heterogeneous model configuration but the same perturbation methods. The impact of the training dataset depends on lead time and on the evaluation criteria. The long-term reforecast improves the reliability of severe snowfall but leads to overdispersion due to the discrepancy in real-time perturbations. Thus, the development of reliable automatic forecasting products of HN needs long reforecasts as homogeneous as possible with the operational systems.


2020 ◽  
Author(s):  
Nousu Jari-Pekka ◽  
Matthieu Lafaysse ◽  
Guillaume Evin ◽  
Matthieu Vernay ◽  
Joseph Bellier ◽  
...  

<p>Forecasting the height of new snow (HS) is essential for avalanche hazard survey, road and ski resorts management, tourism attractiveness, etc. Meteo-France operates the PEARP-S2M probabilistic forecasting system including 35 members of the PEARP Numerical Weather Prediction system, the SAFRAN downscaling tool refining the elevation resolution in mountains, and the Crocus snowpack model representing the main physical processes in the snowpack (compaction, melting, etc.). It provides better HS forecasts than direct NWP diagnostics but exhibits significant biases and underdispersion. Therefore, a post-processing is required to be able to provide automatic forecasting products of HS from this system.</p><p>For that purpose, we compare the skill of two statistical methods (Nonhomogeneous Regression with a Censored Shifted Gamma distribution and Quantile Regression Forest), two predictor datasets for training (22-year reforecast with some discrepancies with the operational system or 3-year real time forecasts similar to the operational system) and two spatial scales of post-processing (local scale or 1000 km² regional scale).</p><p>The improvement relative to the raw forecasts is similar at both spatial scales. Thus, the regional validity of post-processing does not restrict the application at points with observations. The impact of the training dataset depends on lead time and on the evaluation criteria. The long-term reforecast improves the reliability of severe snowfall but leads to overdispersion due to a discrepancy with the initial perturbations used in the operational system. Finally, thanks to a larger number of predictors, the Quantile Regression Forest allows an improvement of forecasts for specific cases when the the rain-snow transition elevation is overestimated by the raw forecasts.</p><p>These conclusions help to choose an optimal post-processing configuration for automatic forecasts of the height of new snow and encourage the atmospheric modelling teams to develop long reforecasts as homogenous as possible with the operational systems.</p>


2007 ◽  
Vol 135 (4) ◽  
pp. 1424-1438 ◽  
Author(s):  
Andrew R. Lawrence ◽  
James A. Hansen

Abstract An ensemble-based data assimilation approach is used to transform old ensemble forecast perturbations with more recent observations for the purpose of inexpensively increasing ensemble size. The impact of the transformations are propagated forward in time over the ensemble’s forecast period without rerunning any models, and these transformed ensemble forecast perturbations can be combined with the most recent ensemble forecast to sensibly increase forecast ensemble sizes. Because the transform takes place in perturbation space, the transformed perturbations must be centered on the ensemble mean from the most recent forecasts. Thus, the benefit of the approach is in terms of improved ensemble statistics rather than improvements in the mean. Larger ensemble forecasts can be used for numerous purposes, including probabilistic forecasting, targeted observations, and to provide boundary conditions to limited-area models. This transformed lagged ensemble forecasting approach is explored and is shown to give positive results in the context of a simple chaotic model. By incorporating a suitable perturbation inflation factor, the technique was found to generate forecast ensembles whose skill were statistically comparable to those produced by adding nonlinear model integrations. Implications for ensemble forecasts generated by numerical weather prediction models are briefly discussed, including multimodel ensemble forecasting.


2018 ◽  
Vol 33 (2) ◽  
pp. 599-607 ◽  
Author(s):  
John R. Lawson ◽  
John S. Kain ◽  
Nusrat Yussouf ◽  
David C. Dowell ◽  
Dustan M. Wheatley ◽  
...  

Abstract The Warn-on-Forecast (WoF) program, driven by advanced data assimilation and ensemble design of numerical weather prediction (NWP) systems, seeks to advance 0–3-h NWP to aid National Weather Service warnings for thunderstorm-induced hazards. An early prototype of the WoF prediction system is the National Severe Storms Laboratory (NSSL) Experimental WoF System for ensembles (NEWSe), which comprises 36 ensemble members with varied initial conditions and parameterization suites. In the present study, real-time 3-h quantitative precipitation forecasts (QPFs) during spring 2016 from NEWSe members are compared against those from two real-time deterministic systems: the operational High Resolution Rapid Refresh (HRRR, version 1) and an upgraded, experimental configuration of the HRRR. All three model systems were run at 3-km horizontal grid spacing and differ in initialization, particularly in the radar data assimilation methods. It is the impact of this difference that is evaluated herein using both traditional and scale-aware verification schemes. NEWSe, evaluated deterministically for each member, shows marked improvement over the two HRRR versions for 0–3-h QPFs, especially at higher thresholds and smaller spatial scales. This improvement diminishes with forecast lead time. The experimental HRRR model, which became operational as HRRR version 2 in August 2016, also provides added skill over HRRR version 1.


2018 ◽  
Author(s):  
Michal Kačmařík ◽  
Jan Douša ◽  
Florian Zus ◽  
Pavel Václavovic ◽  
Kyriakos Balidakis ◽  
...  

Abstract. An analysis of processing settings impact on estimated tropospheric gradients is presented. The study is based on the benchmark data set collected within the COST GNSS4SWEC action with observations from 430 GNSS reference stations in central Europe for May and June 2013. Tropospheric gradients were estimated in eight different variants of GNSS data processing using Precise Point Positioning with the G-Nut/Tefnut software. The impact of the gradient mapping function, elevation cut-off angle, GNSS constellation and real-time versus post-processing mode were assessed by comparing the variants by each to other and by evaluating them with respect to tropospheric gradients derived from two numerical weather prediction models. Generally, all the solutions in the post-processing mode provided a robust tropospheric gradient estimation with a clear relation to real weather conditions. The quality of tropospheric gradient estimates in real-time mode mainly depends on the actual quality of the real-time orbits and clocks. Best results were achieved using the 3° elevation angle cut-off and a combined GPS + GLONASS constellation. Systematic effects of up to 0.3 mm were observed in estimated tropospheric gradients when using different gradient mapping functions which depend on the applied observation elevation-dependent weighting. While the latitudinal troposphere tilting causes a systematic difference in the north gradient component on a global scale, large local wet gradients pointing to a direction of increased humidity cause systematic differences in both gradient components depending on the gradient direction.


2021 ◽  
Author(s):  
Tomasz Hadas ◽  
Grzegorz Marut ◽  
Jan Kapłon ◽  
Witold Rohm

<p>The dynamics of water vapor distribution in the troposphere, measured with Global Navigation Satellite Systems (GNSS), is a subject of weather research and climate studies. With GNSS, remote sensing of the troposphere in Europe is performed continuously and operationally under the E-GVAP (http://egvap.dmi.dk/) program with more than 2000 permanent stations. These data are one of the assimilation system component of mesoscale weather prediction models (10 km scale) for many nations across Europe. However, advancing precise local forecasts for severe weather requires high resolution models and observing system.   Further densification of the tracking network, e.g. in urban or mountain areas, will be costly when considering geodetic-grade equipment. However, the rapid development of GNSS-based applications results in a dynamic release of mass-market GNSS receivers. It has been demonstrated that post-processing of GPS-data from a dual-frequency low-cost receiver allows retrieving ZTD with high accuracy. Although low-cost receivers are a promising solution to the problem of densifying GNSS networks for water vapor monitoring, there are still some technological limitations and they require further development and calibration.</p><p>We have developed a low-cost GNSS station, dedicated to real-time GNSS meteorology, which provides GPS, GLONASS and Galileo dual-frequency observations either in RINEX v3.04 format or via RTCM v3.3 stream, with either Ethernet or GSM data transmission. The first two units are deployed in a close vicinity of permanent station WROC, which belongs to the International GNSS Service (IGS) network. Therefore, we compare results from real-time and near real-time processing of GNSS observations from a low-cost unit with IGS Final products. We also investigate the impact of replacing a standard patch antenna with an inexpensive survey-grade antenna. Finally, we deploy a local network of low-cost receivers in and around the city of Wroclaw, Poland, in order to analyze the dynamics of troposphere delay at a very high spatial resolution.</p><p>As a measure of accuracy, we use the standard deviation of ZTD differences between estimated ZTD and IGS Final product. For the near real-time mode, that accuracy is 5 mm and 6 mm, for single- (L1) and dual-frequency (L1/L5,E5b) solution, respectively. Lower accuracy of the dual-frequency relative solution we justify by the missing antenna phase center correction model for L5 and E5b frequencies. With the real-time Precise Point Positioning technique, we estimate ZTD with the accuracy of 7.5 – 8.6 mm. After antenna replacement, the accuracy is improved almost by a factor of 2 (to 4.1 mm), which is close to the 3.1 mm accuracy which we obtain in real-time using data from the WROC station.</p>


2021 ◽  
Author(s):  
Dengqing Tang ◽  
Lincheng Shen ◽  
Xiaojiao Xiang ◽  
Han Zhou ◽  
Tianjiang Hu

<p>We propose a learning-type anchors-driven real-time pose estimation method for the autolanding fixed-wing unmanned aerial vehicle (UAV). The proposed method enables online tracking of both position and attitude by the ground stereo vision system in the Global Navigation Satellite System denied environments. A pipeline of convolutional neural network (CNN)-based UAV anchors detection and anchors-driven UAV pose estimation are employed. To realize robust and accurate anchors detection, we design and implement a Block-CNN architecture to reduce the impact of the outliers. With the basis of the anchors, monocular and stereo vision-based filters are established to update the UAV position and attitude. To expand the training dataset without extra outdoor experiments, we develop a parallel system containing the outdoor and simulated systems with the same configuration. Simulated and outdoor experiments are performed to demonstrate the remarkable pose estimation accuracy improvement compared with the conventional Perspective-N-Points solution. In addition, the experiments also validate the feasibility of the proposed architecture and algorithm in terms of the accuracy and real-time capability requirements for fixed-wing autolanding UAVs.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Laura Rontu ◽  
Emily Gleeson ◽  
Daniel Martin Perez ◽  
Kristian Pagh Nielsen ◽  
Velle Toll

The direct radiative effect of aerosols is taken into account in many limited-area numerical weather prediction models using wavelength-dependent aerosol optical depths of a range of aerosol species. We studied the impact of aerosol distribution and optical properties on radiative transfer, based on climatological and more realistic near real-time aerosol data. Sensitivity tests were carried out using the single-column version of the ALADIN-HIRLAM numerical weather prediction system, set up to use the HLRADIA simple broadband radiation scheme. The tests were restricted to clear-sky cases to avoid the complication of cloud–radiation–aerosol interactions. The largest differences in radiative fluxes and heating rates were found to be due to different aerosol loads. When the loads are large, the radiative fluxes and heating rates are sensitive to the aerosol inherent optical properties and the vertical distribution of the aerosol species. In such cases, regional weather models should use external real-time aerosol data for radiation parametrizations. Impacts of aerosols on shortwave radiation dominate longwave impacts. Sensitivity experiments indicated the important effects of highly absorbing black carbon aerosols and strongly scattering desert dust.


2014 ◽  
Vol 14 (9) ◽  
pp. 13909-13962 ◽  
Author(s):  
A. Agustí-Panareda ◽  
S. Massart ◽  
F. Chevallier ◽  
S. Boussetta ◽  
G. Balsamo ◽  
...  

Abstract. A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 satellite retrievals, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO2 forecast will be reduced. Improvements in the CO2 forecast are also expected with the continuous developments in the operational IFS.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 300 ◽  
Author(s):  
Aida Jabbari ◽  
Deg-Hyo Bae

Numerical weather prediction (NWP) models produce a quantitative precipitation forecast (QPF), which is vital for a wide range of applications, especially for accurate flash flood forecasting. The under- and over-estimation of forecast uncertainty pose operational risks and often encourage overly conservative decisions to be made. Since NWP models are subject to many uncertainties, the QPFs need to be post-processed. The NWP biases should be corrected prior to their use as a reliable data source in hydrological models. In recent years, several post-processing techniques have been proposed. However, there is a lack of research on post-processing the real-time forecast of NWP models considering bias lead-time dependency for short- to medium-range forecasts. The main objective of this study is to use the total least squares (TLS) method and the lead-time dependent bias correction method—known as dynamic weighting (DW)—to post-process forecast real-time data. The findings show improved bias scores, a decrease in the normalized error and an improvement in the scatter index (SI). A comparison between the real-time precipitation and flood forecast relative bias error shows that applying the TLS and DW methods reduced the biases of real-time forecast precipitation. The results for real-time flood forecasts for the events of 2002, 2007 and 2011 show error reductions and accuracy improvements of 78.58%, 81.26% and 62.33%, respectively.


Sign in / Sign up

Export Citation Format

Share Document