gradient mapping
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1641
Author(s):  
Qiang Song ◽  
Hangfan Liu

This paper proposes a robust multi-frame video super-resolution (SR) scheme to obtain high SR performance under large upscaling factors. Although the reference low-resolution frames can provide complementary information for the high-resolution frame, an effective regularizer is required to rectify the unreliable information from the reference frames. As the high-frequency information is mostly contained in the image gradient field, we propose to learn the gradient-mapping function between the high-resolution (HR) and the low-resolution (LR) image to regularize the fusion of multiple frames. In contrast to the existing spatial-domain networks, we train a deep gradient-mapping network to learn the horizontal and vertical gradients. We found that adding the low-frequency information (mainly from the LR image) to the gradient-learning network can boost the performance of the network. A forward and backward motion field prior is used to regularize the estimation of the motion flow between frames. For robust SR reconstruction, a weighting scheme is proposed to exclude the outlier data. Visual and quantitative evaluations on benchmark datasets demonstrate that our method is superior to many state-of-the-art methods and can recover better details with less artifacts.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1447
Author(s):  
Yeonju Park ◽  
Minkyoung Kim ◽  
Hae-jin Chung ◽  
Ah-hyun Woo ◽  
Isao Noda ◽  
...  

The temperature and mechanism of phase transition of poly(N-isopropylacrylamide-co-acrylic acid) [P(NiPAAm-co-AAc)], which is one of the multi-stimuli responsive polymers, were investigated at various pHs using infrared (IR) spectroscopy, two-dimensional (2D) gradient mapping, and two-dimensional correlation spectroscopy (2D-COS). The determined phase transition temperature of P(NiPAAm-co-AAc) at pH 4, 3, and 2 based on 2D gradient mapping and principal component analysis (PCA) showed that it decreases with decreasing pH, because COOH group in AAc changes with variation of pH. The results of 2D-COS analysis indicated that the phase transition mechanism of P(NiPAAm-co-AAc) hydrogel at pH4 is different from that at pH2 due to the effect of COOH group of AAc.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Veronika Döpper ◽  
Santosh Panda ◽  
Christine Waigl ◽  
Matthias Braun ◽  
Hannes Feilhauer

Cortex ◽  
2020 ◽  
Vol 128 ◽  
pp. 318-321 ◽  
Author(s):  
Izabela Przeździk ◽  
Myrthe Faber ◽  
Guillén Fernández ◽  
Christian F. Beckmann ◽  
Koen V. Haak

Author(s):  
Richard A.I. Bethlehem ◽  
Casey Paquola ◽  
Jakob Seidlitz ◽  
Lisa Ronan ◽  
Boris Bernhardt ◽  
...  

AbstractAgeing is commonly associated with changes to segregation and integration of functional brain networks, but, in isolation, current network-based approaches struggle to elucidate changes across the many axes of functional organisation. However, the advent of gradient mapping techniques to neuroimaging provides a new means of studying functional organisation in a multi-dimensional connectivity space. Here, we studied ageing and behaviourally-relevant differences in a three-dimensional connectivity space using the Cambridge Centre for Ageing Neuroscience cohort (n=643). Building on gradient mapping techniques, we developed a set of measures to quantify the dispersion within and between functional communities. We detected a strong shift of the visual network across the lifespan from an extreme to a more central position in the 3D gradient space. In contrast, the dispersion distance of transmodal communities (dorsal attention, ventral attention, frontoparietal and default mode) did not change. However, these communities were increasingly dispersed with increasing age, reflecting more dissimilar functional connectivity profiles within each community. Increasing dispersion of frontoparietal and ventral attention networks, in particular, was associated negatively with cognition, measured by fluid intelligence. By using a technique that explicitly captures the ordering of functional systems in a multi-dimensional hierarchical framework, we identified behaviorally-relevant age-related differences of within and between network organisation. We propose that the study of functional gradients across the lifespan could provide insights that may facilitate the development of new strategies to maintain cognitive ability across the lifespan in health and disease.


2019 ◽  
Vol 37 (3) ◽  
pp. 429-446 ◽  
Author(s):  
Michal Kačmařík ◽  
Jan Douša ◽  
Florian Zus ◽  
Pavel Václavovic ◽  
Kyriakos Balidakis ◽  
...  

Abstract. An analysis of processing settings impacts on estimated tropospheric gradients is presented. The study is based on the benchmark data set collected within the COST GNSS4SWEC action with observations from 430 Global Navigation Satellite Systems (GNSS) reference stations in central Europe for May and June 2013. Tropospheric gradients were estimated in eight different variants of GNSS data processing using precise point positioning (PPP) with the G-Nut/Tefnut software. The impacts of the gradient mapping function, elevation cut-off angle, GNSS constellation, observation elevation-dependent weighting and real-time versus post-processing mode were assessed by comparing the variants by each to other and by evaluating them with respect to tropospheric gradients derived from two numerical weather models (NWMs). Tropospheric gradients estimated in post-processing GNSS solutions using final products were in good agreement with NWM outputs. The quality of high-resolution gradients estimated in (near-)real-time PPP analysis still remains a challenging task due to the quality of the real-time orbit and clock corrections. Comparisons of GNSS and NWM gradients suggest the 3∘ elevation angle cut-off and GPS+GLONASS constellation for obtaining optimal gradient estimates provided precise models for antenna-phase centre offsets and variations, and tropospheric mapping functions are applied for low-elevation observations. Finally, systematic errors can affect the gradient components solely due to the use of different gradient mapping functions, and still depending on observation elevation-dependent weighting. A latitudinal tilting of the troposphere in a global scale causes a systematic difference of up to 0.3 mm in the north-gradient component, while large local gradients, usually pointing in a direction of increasing humidity, can cause differences of up to 1.0 mm (or even more in extreme cases) in any component depending on the actual direction of the gradient. Although the Bar-Sever gradient mapping function provided slightly better results in some aspects, it is not possible to give any strong recommendation on the gradient mapping function selection.


2018 ◽  
Vol 157 (2) ◽  
pp. 371-386
Author(s):  
A. Skálová
Keyword(s):  

2018 ◽  
Author(s):  
Michal Kačmařík ◽  
Jan Douša ◽  
Florian Zus ◽  
Pavel Václavovic ◽  
Kyriakos Balidakis ◽  
...  

Abstract. An analysis of processing settings impact on estimated tropospheric gradients is presented. The study is based on the benchmark data set collected within the COST GNSS4SWEC action with observations from 430 GNSS reference stations in central Europe for May and June 2013. Tropospheric gradients were estimated in eight different variants of GNSS data processing using Precise Point Positioning with the G-Nut/Tefnut software. The impact of the gradient mapping function, elevation cut-off angle, GNSS constellation and real-time versus post-processing mode were assessed by comparing the variants by each to other and by evaluating them with respect to tropospheric gradients derived from two numerical weather prediction models. Generally, all the solutions in the post-processing mode provided a robust tropospheric gradient estimation with a clear relation to real weather conditions. The quality of tropospheric gradient estimates in real-time mode mainly depends on the actual quality of the real-time orbits and clocks. Best results were achieved using the 3° elevation angle cut-off and a combined GPS + GLONASS constellation. Systematic effects of up to 0.3 mm were observed in estimated tropospheric gradients when using different gradient mapping functions which depend on the applied observation elevation-dependent weighting. While the latitudinal troposphere tilting causes a systematic difference in the north gradient component on a global scale, large local wet gradients pointing to a direction of increased humidity cause systematic differences in both gradient components depending on the gradient direction.


Sign in / Sign up

Export Citation Format

Share Document