scholarly journals Overflow of cold water across the Iceland–Faroe Ridge through the Western Valley

Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 871-885 ◽  
Author(s):  
Bogi Hansen ◽  
Karin Margretha Húsgarð Larsen ◽  
Steffen Malskær Olsen ◽  
Detlef Quadfasel ◽  
Kerstin Jochumsen ◽  
...  

Abstract. The Iceland–Faroe Ridge (IFR) is considered to be the third most important passage for dense overflow water from the Nordic Seas feeding into the lower limb of the Atlantic Meridional Overturning Circulation with a volume transport on the order of 1 Sv (106 m3 s−1). The Western Valley, which is the northernmost deep passage across the IFR, has been presumed to supply a strong and persistent overflow (WV-overflow), contributing a large fraction of the total overflow across the IFR. However, prolonged measurements of this transport are so far missing. In order to quantify the flow by direct measurements, three instrumental packages were deployed close to the sill of the Western Valley for 278 days (2016–2017) including an acoustic Doppler current profiler at the expected location of the overflow core. The average volume transport of WV-overflow during this field experiment was found to be (0.02±0.05) Sv. Aided by the observations and a two-layer hydraulic model, we argue that the reason for this low value is the inflow of warm Atlantic water to the Norwegian Sea in the upper layers suppressing the deep overflow. The link between deep and surface flows explains an observed relationship between overflow and sea level slope as measured by satellite altimetry. This relationship, combined with historical hydrographic measurements, allows us to conclude that the volume transport of WV-overflow most likely has been less than 0.1 Sv on average since the beginning of regular satellite altimetry in 1993. Our new direct measurements do not allow us to present an updated estimate of the total overflow across the IFR, but they indicate that it may well be considerably less than 1 Sv.

2018 ◽  
Author(s):  
Bogi Hansen ◽  
Karin Margretha Húsgarð Larsen ◽  
Steffen Malskær Olsen ◽  
Detlef Quadfasel ◽  
Kerstin Jochumsen ◽  
...  

Abstract. The Iceland-Faroe Ridge (IFR) is considered to be the third-most important passage for dense overflow water from the Nordic Seas feeding into the lower limb of the Atlantic Meridional Overturning Circulation with a volume transport on the order of 1 Sv (106 m3 s−1). The Western Valley, which is the northernmost deep passage across the IFR, has been presumed to supply a strong and persistent overflow (WV-overflow), contributing a large fraction of the total overflow across the IFR. However, prolonged measurements of this transport are so far missing. In order to quantify the flow by direct measurements, three instrumental packages were deployed close to the sill of the Western Valley for 278 days (2016–2017) including an Acoustic Doppler Current Profiler at the expected location of the overflow core. The average volume transport of WV-overflow during this field experiment was found to be less than 0.03 Sv. Aided by the observations and a two-layer hydraulic model, we argue that the reason for this low value is the inflow of warm Atlantic Water to the Norwegian Sea in the upper layers suppressing the deep overflow. The link between deep and surface flows explains an observed relationship between overflow and sea level slope as measured by satellite altimetry. This relationship, combined with historical hydrographic measurements allows us to conclude that the volume transport of WV-overflow most likely has been less than 0.1 Sv on average since the beginning of regular satellite altimetry in 1993. Our new direct measurements do not allow us to present an updated estimate of the total overflow across the IFR, but they indicate that it may well be considerably less than 1 Sv.


2016 ◽  
Author(s):  
Bogi Hansen ◽  
Karin Margretha Húsgarð Larsen ◽  
Hjálmar Hátún ◽  
Svein Østerhus

Abstract. The Faroe Bank Channel is the deepest passage across the Greenland-Scotland Ridge (GSR), and through it, there is a continuous deep flow of cold and dense water passing from the Arctic Mediterranean into the North Atlantic and further to the rest of the World oceans. This FBC-overflow is part of the Atlantic Meridional Overturning Circulation (AMOC), which has recently been suggested to have weakened. From November 1995 to May 2015, the FBC-overflow has been monitored by a continuous ADCP (Acoustic Doppler Current Profiler) mooring, which has been deployed in the middle of this narrow channel. Combined with regular hydrography cruises and several short-term mooring experiments, this allows us to construct time series of volume transport and to follow changes in the hydrographic properties and density of the FBC-overflow. The mean kinematic overflow, derived from the velocity field solely, was found to be (2.2 ± 0.2) Sv (1 Sv = 106 m3 s−1) with a slight, but not statistically significant, positive trend. The coldest part, and probably the bulk, of the FBC-overflow warmed by a bit more than 0.1 °C, especially after 2002. This warming was, however, accompanied by increasing salinities, which seem to have compensated for the temperature-induced density decrease. Thus, the FBC-overflow has remained stable in volume transport as well as density during the two decades from 1995 to 2015. This is consistent with reported observations from the other main overflow branch, the Denmark Strait overflow, and the three Atlantic inflow branches to the Arctic Mediterranean that feed the overflows. If the AMOC has weakened during the last two decades, it is not likely to have been due to its northernmost extension – the exchanges across the Greenland-Scotland Ridge.


2008 ◽  
Vol 38 (5) ◽  
pp. 1000-1010 ◽  
Author(s):  
Yueng-Djern Lenn ◽  
Teresa K. Chereskin ◽  
Janet Sprintall

Abstract Accurately resolving the mean Antarctic Circumpolar Current (ACC) is essential for determining Southern Ocean eddy fluxes that are important to the global meridional overturning circulation. Previous estimates of the mean ACC have been limited by the paucity of Southern Ocean observations. A new estimate of the mean surface ACC in Drake Passage is presented that combines sea surface height anomalies measured by satellite altimetry with a recent dataset of repeat high-resolution acoustic Doppler current profiler observations. A mean streamfunction (surface height field), objectively mapped from the mean currents, is used to validate two recent dynamic height climatologies. The new streamfunction has narrower and stronger ACC fronts separated by quiescent zones of much weaker flow, thereby improving on the resolution of ACC fronts observed in the other climatologies. Distinct streamlines can be associated with particular ACC fronts and tracked in time-dependent maps of dynamic height. This analysis shows that varying degrees of topographic control are evident in the preferred paths of the ACC fronts through Drake Passage.


Ocean Science ◽  
2016 ◽  
Vol 12 (6) ◽  
pp. 1205-1220 ◽  
Author(s):  
Bogi Hansen ◽  
Karin Margretha Húsgarð Larsen ◽  
Hjálmar Hátún ◽  
Svein Østerhus

Abstract. The Faroe Bank Channel (FBC) is the deepest passage across the Greenland–Scotland Ridge (GSR) and there is a continuous deep flow of cold and dense water passing through it from the Arctic Mediterranean into the North Atlantic and further to the rest of the world ocean. This FBC overflow is part of the Atlantic Meridional Overturning Circulation (AMOC), which has recently been suggested to have weakened. From November 1995 to May 2015, the FBC overflow has been monitored by a continuous ADCP (acoustic Doppler current profiler) mooring, which has been deployed in the middle of this narrow channel. Combined with regular hydrography cruises and several short-term mooring experiments, this allowed us to construct time series of volume transport and to follow changes in the hydrographic properties and density of the FBC overflow. The mean kinematic overflow, derived solely from the velocity field, was found to be (2.2 ± 0.2) Sv (1 Sv  =  106 m3 s−1) with a slight, but not statistically significant, positive trend. The coldest part, and probably the bulk, of the FBC overflow warmed by a bit more than 0.1 °C, especially after 2002, increasing the transport of heat into the deep ocean. This warming was, however, accompanied by increasing salinities, which seem to have compensated for the temperature-induced density decrease. Thus, the FBC overflow has remained stable in volume transport as well as density during the 2 decades from 1995 to 2015. After crossing the GSR, the overflow is modified by mixing and entrainment, but the associated change in volume (and heat) transport is still not well known. Whatever effect this has on the AMOC and the global energy balance, our observed stability of the FBC overflow is consistent with reported observations from the other main overflow branch, the Denmark Strait overflow, and the three Atlantic inflow branches to the Arctic Mediterranean that feed the overflows. If the AMOC has weakened during the last 2 decades, it is not likely to have been due to its northernmost extension – the exchanges across the Greenland–Scotland Ridge.


2018 ◽  
Author(s):  
Svein Østerhus ◽  
Rebecca Woodgate ◽  
Héðinn Valdimarsson ◽  
Bill Turrell ◽  
Laura de Steur ◽  
...  

Abstract. The Arctic Mediterranean (AM) is the collective name for the Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Into this region, water enters through the Bering Strait (Pacific inflow) and through the passages across the Greenland-Scotland Ridge (Atlantic inflow) and then modified within the AM. The modified waters leave the AM in several flow branches, which are grouped into two different categories: (1) overflow of dense water through the deep passages across the Greenland-Scotland Ridge, and (2) outflow of light water – here termed surface outflow – on both sides of Greenland. These exchanges transport heat, salt, and other substances into and out of the AM and are important for conditions in the AM. They are also part of the global ocean circulation and climate system. Attempts to quantify the transports by various methods have been made for many years, but only recently, has the observational coverage become sufficiently complete to allow an integrated assessment of the AM-exchanges based solely on observations. In this study, we focus on the transport of water and have collected data on volume transport for as many AM-exchange branches as possible between 1993–2015. The total AM-import (oceanic inflows plus freshwater) is found to be 9.1 ± 0.7 Sv (1 Sv = 106 m3 s−1) and has a seasonal variation of amplitude close to 1 Sv and maximum import in October. Roughly one third of the imported water leaves the AM as surface outflow with the remaining two thirds leaving as overflow. The overflow is mainly produced from modified Atlantic inflow and around 70 % of the total Atlantic inflow is converted into overflow, indicating a strong coupling between these two exchanges. The surface outflow is fed from the Pacific inflow and freshwater, but is still ~ 2/3rds from modified Atlantic water. For the inflow branches and the two main overflow branches (Denmark Strait and Faroe Bank Channel), systematic monitoring of volume transport has been established since the mid-1990s and this allows us to estimate trends for the AM-exchanges as a whole. At the 95 % level, only the inflow of Pacific water through the Bering Strait showed a statistically significant trend, which was positive. Both the total AM-inflow and the combined transport of the two main overflow branches also showed trends consistent with strengthening, but they were not statistically significant. They do suggest, however, that any significant weakening of these flows during the last two decades is unlikely and the overall message is that the AM-exchanges remained remarkably stable in the period from the mid-1990s to the mid-2010s. The overflows are the densest source water for the deep limb of the North Atlantic part of the Meridional Overturning Circulation (AMOC), and this conclusion argues that the reported weakening of the AMOC was not due to overflow weakening or reduced overturning in the AM. Although the combined data set has made it possible to establish a consistent budget for the AM-exchanges, the observational coverage for some of the branches is limited, which introduces considerable uncertainty. This lack of coverage is especially extreme for the surface outflows through the Denmark Strait, the overflow across the Iceland-Faroe Ridge, and the inflow over the Scottish shelf. We recommend that more effort is put into observing these flows as well as maintaining the monitoring systems established for the other exchange branches.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefanie Semper ◽  
Robert S. Pickart ◽  
Kjetil Våge ◽  
Karin Margretha H. Larsen ◽  
Hjálmar Hátún ◽  
...  

Abstract Dense water from the Nordic Seas passes through the Faroe Bank Channel and supplies the lower limb of the Atlantic Meridional Overturning Circulation, a critical component of the climate system. Yet, the upstream pathways of this water are not fully known. Here we present evidence of a previously unrecognised deep current following the slope from Iceland toward the Faroe Bank Channel using high-resolution, synoptic shipboard observations and long-term measurements north of the Faroe Islands. The bulk of the volume transport of the current, named the Iceland-Faroe Slope Jet (IFSJ), is relatively uniform in hydrographic properties, very similar to the North Icelandic Jet flowing westward along the slope north of Iceland toward Denmark Strait. This suggests a common source for the two major overflows across the Greenland-Scotland Ridge. The IFSJ can account for approximately half of the total overflow transport through the Faroe Bank Channel, thus constituting a significant component of the overturning circulation in the Nordic Seas.


2020 ◽  
Author(s):  
Karin Margretha Húsgarð Larsen ◽  
Bogi Hansen ◽  
Hjálmar Hátún ◽  
Svein Østerhus

<p>Since November 1995, we have monitored the volume transport of Faroe Bank Channel overflow (FBC-overflow) and since 2001, the bottom temperature at the sill of the channel. The FBC-overflow is the coldest and densest overflow component and contributes approximately one third of the total overflow. Together with water that it entrains en route, it is therefore one of the main sources for North Atlantic Deep Water and the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). In spite of reported AMOC weakening, the FBC-overflow has shown no signs of reduced volume transport. In contrast, a linear trend analysis indicated a weak (but non-significant) positive trend in volume transport of +5% from 1996 to 2018. The bottom water at the sill of the channel is the coldest component of the FBC-overflow and the densest overflow component overall. Since high-quality monitoring of the bottom water temperature began in summer 2001, the bottom water has warmed by approximately 0.2 °C with most of the warming occurring in two periods: 2004-2007 and 2015-2019. During the period, salinity has also been changing and the combined temperature/salinity effect on the density of the FBC-overflow will be discussed.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Hjálmar Hátún ◽  
Léon Chafik ◽  
Karin Margretha Húsgarð Larsen

The Norwegian Sea gyre (NSG) is a large body of Arctic intermediate water and deep dense overflow waters, which circulate counterclockwise within the Norwegian Sea. Argo float trajectories presented in this study suggest that the NSG attains its strongest and most focused flow downstream of a confluence of subarctic waters from the Iceland Sea and the Jan Mayen Ridge at steep bathymetry north of the Faroe slope. Based on hydrographic data from a meridional standard section across this flow (1988 to present), the first baroclinic estimate of the NSG circulation strength is provided. We, furthermore, show that the NSG circulation regulates key aspects of both the poleward Atlantic Water (AW) currents and the equatorward near-bottom and mid-depth flows in the Norwegian Sea – the main arteries of the Meridional Overturning Circulation. More specifically, we demonstrate close links between the NSG circulation and (i) the observed Faroe Bank Channel Overflow (FBCO) transport, (ii) variable depth of the main thermocline separating AW from the underlying colder and denser subarctic water masses, and (iii) satellite-derived sea-surface heights (SSHs) in the southern Nordic Seas. In general, a strong NSG and weak FBCO transport are associated with an uplifted thermocline and depressed SSH. Along a narrow band near the Norwegian and Shetland slopes, a strong NSG – oppositely – links to a depressed interface. Daily records of the FBCO transport, and satellite altimetry in a sensitive region north of the Iceland-Faroe Ridge, complement our hydrographic monitoring of the NSG strength. Together these records constitute valuable indicators for aspects of the Norwegian Sea physical oceanography, which likely have an impact on regional climate, ecology and biological productivity.


2020 ◽  
Vol 6 (32) ◽  
pp. eaba7573
Author(s):  
M. Kersalé ◽  
C. S. Meinen ◽  
R. C. Perez ◽  
M. Le Hénaff ◽  
D. Valla ◽  
...  

The Meridional Overturning Circulation (MOC) is a primary mechanism driving oceanic heat redistribution on Earth, thereby affecting Earth’s climate and weather. However, the full-depth structure and variability of the MOC are still poorly understood, particularly in the South Atlantic. This study presents unique multiyear records of the oceanic volume transport of both the upper (<~3100 meters) and abyssal (>~3100 meters) overturning cells based on daily moored measurements in the South Atlantic at 34.5°S. The vertical structure of the time-mean flows is consistent with the limited historical observations. Both the upper and abyssal cells exhibit a high degree of variability relative to the temporal means at time scales, ranging from a few days to a few weeks. Observed variations in the abyssal flow appear to be largely independent of the flow in the overlying upper cell. No meaningful trends are detected in either cell.


Sign in / Sign up

Export Citation Format

Share Document