scholarly journals Review of Manuscript “Dense water formation in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment” by Vilibic et al.

2017 ◽  
Author(s):  
Anonymous
2016 ◽  
Vol 51 (3) ◽  
pp. 1211-1236 ◽  
Author(s):  
Natalija Dunić ◽  
Ivica Vilibić ◽  
Jadranka Šepić ◽  
Samuel Somot ◽  
Florence Sevault

2017 ◽  
Author(s):  
Ivica Vilibić ◽  
Hrvoje Mihanović ◽  
Ivica Janeković ◽  
Clea Denamiel ◽  
Pierre-Marie Poulain ◽  
...  

Abstract. The paper investigates wintertime dynamics of the coastal northeastern Adriatic Sea, and is based on numerical modelling and in situ data collected through field campaigns executed during the winter and spring of 2015. The data have been collected by a variety of instruments and platforms (ADCPs, CTDs, glider, profiling float), and have been accompanied with a one-way coupled ALADIN/ROMS modelling effort. Research focus has been put on dense water formation (DWF), thermal changes and circulation, and water exchange between the coastal and open Adriatic. According to both observations and modelling results, dense waters are formed in the northeastern coastal Adriatic during cold bora outbreaks, even during milder-than-average winters (as was the winter of 2015). However, dense water formed in this coastal region has, due to lower salinities, lower densities than dense water formed at the open Adriatic. Since the sea is deeper in the coastal area than at the open Adriatic, dense waters from the open Adriatic occasionally enter the coastal area near the bottom of the connecting passages, while the surface flow is mostly outward from the coastal area. Median residence time of the coastal area is estimated to about 1–2 months, indicating that the coastal area may be relatively quickly renewed by the open Adriatic waters. The model significantly underestimates currents and transports in connecting channels, which may be a result of a too coarse resolution of atmospheric forcing, misrepresentation of bathymetry or absence of the air-sea feedback in the model. Obtained data represents a comprehensive marine dataset, pointing to a number of interesting phenomena to be investigated in the future.


2012 ◽  
Vol 9 (8) ◽  
pp. 10331-10370
Author(s):  
G. Cossarini ◽  
S. Querin ◽  
C. Solidoro

Abstract. Marginal seas play a potentially important role in the global carbon cycle; however, due to differences in the scales of variability and dynamics, marginal seas are seldom fully accounted for in global models or estimates. Specific high-resolution studies may elucidate the role of marginal seas and assist in the compilation of a complete global budget. In this study, we investigated the air-sea exchange and the carbon cycle dynamics in a marginal sub-basin of the Mediterranean Sea (the Adriatic Sea) by adopting a coupled transport-biogeochemical model of intermediate complexity including carbonate dynamics. The Adriatic Sea is a highly productive area owed to riverine fertilisation and is a site of intense dense water formation both on the northern continental shelf and in the southern sub-basin. Therefore, the study area may be an important site of CO2 sequestration in the Mediterranean Sea. The results of the model simulation show that the Adriatic Sea, as a whole, is a CO2 sink with a mean annual flux of 36 mg m−2 day−1. The northern part absorbs more carbon (68 mg m−2 day−1) due to an efficient continental shelf pump process, whereas the southern part behaves similar to an open ocean. Nonetheless, the Southern Adriatic Sea accumulates dense, southward-flowing, carbon-rich water produced on the northern shelf. During a warm year and despite an increase in aquatic primary productivity, the sequestration of atmospheric CO2 is reduced by approximately 15% due to alterations of the solubility pump and reduced dense water formation. The seasonal cycle of temperature and biological productivity modulates the efficiency of the carbon pump at the surface, whereas the intensity of winter cooling in the northern sub-basin leads to the export of C-rich dense water to the deep layer of the southern sub-basin and, subsequently, to the interior of the Mediterranean Sea.


2014 ◽  
Vol 119 (5) ◽  
pp. 3200-3218 ◽  
Author(s):  
Ivica Janeković ◽  
Hrvoje Mihanović ◽  
Ivica Vilibić ◽  
Martina Tudor

Author(s):  
Yarisbel Garcia‐Quintana ◽  
Nathan Grivault ◽  
Xianmin Hu ◽  
Paul G. Myers

Ocean Science ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. 245-258 ◽  
Author(s):  
G. M. R. Manzella ◽  
F. Reseghetti ◽  
G. Coppini ◽  
M. Borghini ◽  
A. Cruzado ◽  
...  

Abstract. The Ships Of Opportunity Program in the Mediterranean Sea was established at the end of 1999, in the framework of the Mediterranean Forecasting System – Pilot Project (MFS-PP). Many improvements have been made in data collection, transmission and management. Calibration of selected XBTs and a comparison of XBTs vs. CTDs during some research cruises have assured the quality of the data. Transmission now allows receiving data in full resolution by using GSM or satellite telecommunication services; management is offering access to high quality data and view services. The effects of technological and methodological improvements in the observing system are assessed in terms of capability to represent the most important circulation features. The improved methodologies have been tested during the Mediterranean Forecasting System – Toward Environmental Prediction (MFS-TEP) – Targeted Operational Period (MFS-TOP), lasting from September 2004 to February 2005. In spite of the short period of measurements, several important aspects of the Mediterranean Sea circulation have been verified, such as eddies and gyres in the various sub-basins, and dense water formation processes in some of them (vertical homogeneous profiles of about 13°C down to ~800 m in the Provençal, and of about 14.9°C down to ~300 m in the Levantine have allowed defining an index of dense water formation).


1998 ◽  
Vol 103 (C4) ◽  
pp. 7647-7661 ◽  
Author(s):  
Thomas J. Weingartner ◽  
Donald J. Cavalieri ◽  
Knut Aagaard ◽  
Yasunori Sasaki

2017 ◽  
Vol 123 ◽  
pp. 118-128 ◽  
Author(s):  
Gianmarco Ingrosso ◽  
Manuel Bensi ◽  
Vanessa Cardin ◽  
Michele Giani

Sign in / Sign up

Export Citation Format

Share Document