scholarly journals The improvements of the ships of opportunity program in MFS-TEP

Ocean Science ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. 245-258 ◽  
Author(s):  
G. M. R. Manzella ◽  
F. Reseghetti ◽  
G. Coppini ◽  
M. Borghini ◽  
A. Cruzado ◽  
...  

Abstract. The Ships Of Opportunity Program in the Mediterranean Sea was established at the end of 1999, in the framework of the Mediterranean Forecasting System – Pilot Project (MFS-PP). Many improvements have been made in data collection, transmission and management. Calibration of selected XBTs and a comparison of XBTs vs. CTDs during some research cruises have assured the quality of the data. Transmission now allows receiving data in full resolution by using GSM or satellite telecommunication services; management is offering access to high quality data and view services. The effects of technological and methodological improvements in the observing system are assessed in terms of capability to represent the most important circulation features. The improved methodologies have been tested during the Mediterranean Forecasting System – Toward Environmental Prediction (MFS-TEP) – Targeted Operational Period (MFS-TOP), lasting from September 2004 to February 2005. In spite of the short period of measurements, several important aspects of the Mediterranean Sea circulation have been verified, such as eddies and gyres in the various sub-basins, and dense water formation processes in some of them (vertical homogeneous profiles of about 13°C down to ~800 m in the Provençal, and of about 14.9°C down to ~300 m in the Levantine have allowed defining an index of dense water formation).

2006 ◽  
Vol 3 (5) ◽  
pp. 1717-1746 ◽  
Author(s):  
G. M. R. Manzella ◽  
F. Reseghetti ◽  
G. Coppini ◽  
M. Borghini ◽  
A. Crusado ◽  
...  

Abstract. The Ships Of Opportunity Program in the Mediterranean Sea was established at the end of 1999, in the framework of the Mediterranean Forecasting System – Pilot Project (MFS-PP). Many improvements have been made in data collection, transmission and management. Calibration of selected XBTs and a comparison of XBTs vs. CTDs during some research cruises have assured the quality of the data. Transmission now allows receiving data in full resolution by using GSM or satellite telecommunication services; management is offering access to high quality data and view services. The effects of technological and methodological improvements in the observing system are assessed in terms of capability to represent the most important circulation features. The improved methodologies have been tested during the Mediterranean Forecasting System – Toward Environmental Prediction (MFS-TEP) – Targeted Operational Period (MFS-TOP), lasting from September 2004 to February 2005. In spite of the short period of measurements, several important aspects of the Mediterranean Sea circulation have been verified, such as eddies and gyres in the various sub-basins, and dense water formation processes in some of them (vertical homogeneous profiles of about 13°C down to ~800 m in the Provencal, and of about 14.9°C down to ~300 m in the Levantine have allowed defining an index of dense water formation).


2017 ◽  
Vol 123 ◽  
pp. 118-128 ◽  
Author(s):  
Gianmarco Ingrosso ◽  
Manuel Bensi ◽  
Vanessa Cardin ◽  
Michele Giani

Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Pascal Conan ◽  
Pierre Testor ◽  
Claude Estournel ◽  
Fabrizio D'Ortenzio ◽  
Xavier Durrieu de Madron

A new special issue of JGR: Oceans and JGR: Atmospheres presents new insights into the dynamics of dense water formation in the western Mediterranean Sea and its biogeochemical consequences.


2012 ◽  
Vol 9 (8) ◽  
pp. 10331-10370
Author(s):  
G. Cossarini ◽  
S. Querin ◽  
C. Solidoro

Abstract. Marginal seas play a potentially important role in the global carbon cycle; however, due to differences in the scales of variability and dynamics, marginal seas are seldom fully accounted for in global models or estimates. Specific high-resolution studies may elucidate the role of marginal seas and assist in the compilation of a complete global budget. In this study, we investigated the air-sea exchange and the carbon cycle dynamics in a marginal sub-basin of the Mediterranean Sea (the Adriatic Sea) by adopting a coupled transport-biogeochemical model of intermediate complexity including carbonate dynamics. The Adriatic Sea is a highly productive area owed to riverine fertilisation and is a site of intense dense water formation both on the northern continental shelf and in the southern sub-basin. Therefore, the study area may be an important site of CO2 sequestration in the Mediterranean Sea. The results of the model simulation show that the Adriatic Sea, as a whole, is a CO2 sink with a mean annual flux of 36 mg m−2 day−1. The northern part absorbs more carbon (68 mg m−2 day−1) due to an efficient continental shelf pump process, whereas the southern part behaves similar to an open ocean. Nonetheless, the Southern Adriatic Sea accumulates dense, southward-flowing, carbon-rich water produced on the northern shelf. During a warm year and despite an increase in aquatic primary productivity, the sequestration of atmospheric CO2 is reduced by approximately 15% due to alterations of the solubility pump and reduced dense water formation. The seasonal cycle of temperature and biological productivity modulates the efficiency of the carbon pump at the surface, whereas the intensity of winter cooling in the northern sub-basin leads to the export of C-rich dense water to the deep layer of the southern sub-basin and, subsequently, to the interior of the Mediterranean Sea.


2010 ◽  
Vol 1 (1) ◽  
pp. 67-83 ◽  
Author(s):  
Antonio Pusceddu ◽  
Marianna Mea ◽  
Cristina Gambi ◽  
Silvia Bianchelli ◽  
Miquel Canals ◽  
...  

2003 ◽  
Vol 21 (1) ◽  
pp. 221-236 ◽  
Author(s):  
G. Zodiatis ◽  
R. Lardner ◽  
A. Lascaratos ◽  
G. Georgiou ◽  
G. Korres ◽  
...  

Abstract. A high resolution nested flow model for the coastal, shelf and open sea areas of the Cyprus Basin, NE Levantine, eastern Mediterranean Sea is implemented to fulfil the objectives of the Mediterranean Forecasting System Pilot Project, funded by the EU. The Cyprus coastal ocean model is nested entirely within a coarse regional grid model of the eastern Mediterranean Sea, using the MODB climatology for initialisation and the ECMWF perpetual year surface forcing. The nested simulations of the Cyprus model were able to reproduce, with greater detail, flow features similar to those of the coarse grid regional model. The project results show the feasibility of the approach for the development of an operational forecasting system in the Mediterranean Sea, particularly in the Cyprus coastal/shelf sea area. Key words. Oceanography: general (descriptive and regional oceanography; numerical modelling) Oceanography: physical (general circulation)


2010 ◽  
Vol 1 (1) ◽  
pp. 67 ◽  
Author(s):  
Antonio Pusceddu ◽  
Marianna Mea ◽  
Cristina Gambi ◽  
Silvia Bianchelli ◽  
Miquel Canals ◽  
...  

Natural episodic events, such as gravity flows, submarine landslides, and benthic storms can determine severe modifications in the structure and functioning of deep-sea ecosystems. Here, we report and compare the ecosystem effects produced by dense water formation events that occurred in the Gulf of Lions (NW Mediterranean) and the Aegean Sea (NE Mediterranean). In both regions, the rapid sinking of cold dense waters, driven by regional meteorological forcings, results in important immediate modifications that can be summarised in: (i) increased organic matter content in the deep basin; (ii) diminished benthic abundance; and (iii) changes of benthic biodiversity. At longer time scale the analysis reveals, however, different resilience times in the two regions. The Gulf of Lions is characterized by a very fast (months) recovery whereas the Aegean Sea shows much longer (45 years) resilience time. New long-term studies are further needed to identify the potential effects that changes in the duration, intensity and frequency of episodic events could have on the structure, biodiversity and functioning of the deep Mediterranean Sea under environmental and climate change scenarios.


Sign in / Sign up

Export Citation Format

Share Document