scholarly journals Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion

Ocean Science ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 503-519 ◽  
Author(s):  
R. Sorgente ◽  
A. Olita ◽  
P. Oddo ◽  
L. Fazioli ◽  
A. Ribotti

Abstract. The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.

2011 ◽  
Vol 8 (3) ◽  
pp. 1161-1214 ◽  
Author(s):  
R. Sorgente ◽  
A. Olita ◽  
P. Oddo ◽  
L. Fazioli ◽  
A. Ribotti

Abstract. The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean Sea has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products. The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions composing the model domain, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre. The classical the kinetic energy decomposition (eddy and mean) allowed to depict and to quantify the stable and fluctuating parts of the circulation in the region, and to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.


Author(s):  
J. Michael Battalio

AbstractThe ability of Martian reanalysis datasets to represent the growth and decay of short-period (1.5 < P < 8 sol) transient eddies is compared across the Mars Analysis Correction Data Assimilation (MACDA), Open access to Mars Assimilated Remote Soundings (OpenMARS), and Ensemble Mars Reanalysis System (EMARS). Short-period eddies are predominantly surface-based, have the largest amplitudes in the northern hemisphere, and are found, in order of decreasing eddy kinetic energy amplitude, in Utopia, Acidalia, and Arcadia Planitae in the northern hemisphere, and south of the Tharsis Plateau and between Argyre and Hellas Basins in the southern hemisphere. Short-period eddies grow on the upstream (western) sides of basins via baroclinic energy conversion and by extracting energy from the mean flow and long-period (P > 8 sol) eddies when interacting with high relief. Overall, the combined impact of barotropic energy conversion is a net loss of eddy kinetic energy, which rectifies previous conflicting results. When Thermal Emission Spectrometer observations are assimilated (Mars years 24–27), all three reanalyses agree on eddy amplitude and timing, but during the Mars Climate Sounder (MCS) observational era (Mars years 28–33), eddies are less constrained. The EMARS ensemble member has considerably higher eddy generation than the ensemble mean, and bulk eddy amplitudes in the deterministic OpenMARS reanalysis agree with the EMARS ensemble rather than the EMARS member. Thus, analysis of individual eddies during the MCS era should only be performed when eddy amplitudes are large and when there is agreement across reanalyses.


2015 ◽  
Vol 42 (21) ◽  
pp. 9379-9386 ◽  
Author(s):  
Jan K. Rieck ◽  
Claus W. Böning ◽  
Richard J. Greatbatch ◽  
Markus Scheinert

2015 ◽  
Vol 72 (3) ◽  
pp. 1117-1136 ◽  
Author(s):  
David W. J. Thompson ◽  
Ying Li

Abstract Large-scale variability in the Northern Hemisphere (NH) circulation can be viewed in the context of three primary types of structures: 1) teleconnection patterns, 2) a barotropic annular mode, and 3) a baroclinic annular mode. The barotropic annular mode corresponds to the northern annular mode (NAM) and has been examined extensively in previous research. Here the authors examine the spatial structure and time-dependent behavior of the NH baroclinic annular mode (NBAM). The NAM and NBAM have very different signatures in large-scale NH climate variability. The NAM emerges as the leading principal component (PC) time series of the zonal-mean kinetic energy. It dominates the variance in the wave fluxes of momentum, projects weakly onto the eddy kinetic energy and wave fluxes of heat, and can be modeled as Gaussian red noise with a time scale of ~10 days. In contrast, the NBAM emerges as the leading PC time series of the eddy kinetic energy. It is most clearly identified when the planetary-scale waves are filtered from the data, dominates the variance in the synoptic-scale eddy kinetic energy and wave fluxes of heat, and has a relatively weak signature in the zonal-mean kinetic energy and the wave fluxes of momentum. The NBAM is marked by weak but significant enhanced spectral power on time scales of ~20–25 days. The NBAM is remarkably similar to its Southern Hemisphere counterpart despite the pronounced interhemispheric differences in orography and land–sea contrasts.


MAUSAM ◽  
2021 ◽  
Vol 67 (2) ◽  
pp. 493-498
Author(s):  
SOMENATH DUTTA ◽  
D. M. RASE ◽  
SUNITHA DEVI

An attempt has been made to study dynamics of consecutive weak/strong spell of north east monsoon for the years, 2009 and 2010 from an energetics aspect.  For that different energy terms, their generation and conversion among different energy terms have been computed for consecutive weak and strong phases during Oct to Dec of the above two years over a limited region between 70 °E to 85 °E, 5 °N to 20 °N. These computations are based on daily NCEP 2.5° × 2.5° data for the same period. The transition from weak phase to strong phase of north east monsoon (NEM) observed to be associated with an enhancement in conversion of zonal available potential energy (Az) to zonal kinetic energy (Kz), implying a strengthening of Hadley circulation, favouring the above transition. It is also observed that the transition from weak phase to strong phase is associated with enhanced Baroclinic energy conversion  


Author(s):  
Jin-Song von Storch

The energetics considerations based on Lorenz’s available potential energy A focus on identification and quantification of processes capable of converting external energy sources into the kinetic energy of atmospheric and oceanic general circulations. Generally, these considerations consist of: (a) identifying the relevant energy compartments from which energy can be converted against friction to kinetic energy of motions of interests; (b) formulating for these energy compartments budget equations that describe all possible energy pathways; and (c) identifying the dominant energy pathways using realistic data. In order to obtain a more detailed description of energy pathways, a partitioning of motions, for example, into a “mean” and an “eddy” component, or into a diabatic and an adiabatic component, is used. Since the budget equations do not always suggest the relative importance of all possible pathways, often not even the directions, data that describe the atmospheric and the oceanic state in a sufficiently accurate manner are needed for evaluating the energy pathways. Apart from the complication due to different expressions of A, ranging from the original definition by Lorenz in 1955 to its approximations and to more generally defined forms, one has to balance the complexity of the respective budget equations that allows the evaluation of more possible energy pathways, with the quality of data available that allows sufficiently accurate estimates of energy pathways. With regard to the atmosphere, our knowledge, as inferred from the four-box Lorenz energy cycle, has consolidated in the last two decades, by, among other means, using data assimilation products obtained by combining observations with realistic atmospheric general circulation models (AGCMs). The eddy kinetic energy, amounting to slightly less than 50% of the total kinetic energy, is supported against friction through a baroclinic pathway “fueled” by the latitudinally dependent diabatic heating. The mean kinetic energy is supported against friction by converting eddy kinetic energy via inverse cascades. For the ocean, our knowledge is still emerging. The description through the four-box Lorenz energy cycle is approximative and was only estimated from a simulation of a 0.1° oceanic general circulation models (OGCM) realistically forced at the sea surface, rather than from a data assimilation product. The estimates obtained so far suggest that the oceanic eddy kinetic energy, amounting almost 75% of the total oceanic kinetic energy, is supported against friction through a baroclinic pathway similar to that in the atmosphere. However, the oceanic baroclinic pathway is “fueled” to a considerable extent by converting mean kinetic energy supported by winds into mean available potential energy. Winds are also the direct source of the kinetic energy of the mean circulation, without involving noticeable inverse cascades from transients, at least not for the ocean as a whole. The energetics of oceanic general circulation can also be examined by separating diabatic from adiabatic processes. Such a consideration is thought to be more appropriate for understanding the energetics of the oceanic meridional overturning circulation (MOC), since this circulation is sensitive to density changes induced by diabatic mixing. Further work is needed to quantify the respective energy pathways using realistic data.


2020 ◽  
Author(s):  
Song Li ◽  
Nuno Serra ◽  
Detlef Stammer

&lt;p&gt;Despite recent progress in measuring the ocean eddy field with satellite missions at the mesoscale (order of 100 km), containing the major fraction of ocean kinetic energy, many questions still remain regarding the generation, conversion and dissipation mechanisms of eddy kinetic energy (K&lt;sub&gt;e&lt;/sub&gt;). In this work, we use the output from an idealized 500-m resolution ocean numerical simulation to study the conversion of K&lt;sub&gt;e&lt;/sub&gt; in the absence and presence of wind stress forcing. In contrast to the result of the unforced run, K&lt;sub&gt;e&lt;/sub&gt; increased approximately nine times in the mixed layer and considerably in the pycnocline in the forced run. Eddies and filaments were seen to re-stratify the mixed layer and wind-induced turbulence at the base of the mixed layer promoted its deepening and therefore dramatically enhanced the exchange between K&lt;sub&gt;e&lt;/sub&gt; and eddy available potential energy (P&lt;sub&gt;e&lt;/sub&gt;). The wind stress forcing additionally affected the conversion processes between P&lt;sub&gt;e&lt;/sub&gt; and mean kinetic energy (K&lt;sub&gt;m&lt;/sub&gt;). The wind also excited inertial and superinertial motions throughout almost the whole water column. Although those motions played a major role in the conversion between P&lt;sub&gt;e&lt;/sub&gt; and K&lt;sub&gt;e&lt;/sub&gt;, the net effect by inertial and superinertial flows was almost null. In addition, we found an asymmetric character in kinetic energy conversion in eddies. Cyclonic and anti-cyclonic eddies showed different behaviour regarding conversion from P&lt;sub&gt;e&lt;/sub&gt; and K&lt;sub&gt;e&lt;/sub&gt;, which was positive on the high K&lt;sub&gt;e&lt;/sub&gt; part in the anti-cyclonic eddy but negative in the cyclonic eddy.&lt;/p&gt;


2021 ◽  
Author(s):  
Matthew Agius ◽  
Fabrizio Magrini ◽  
Giovanni Diaferia ◽  
Fabio Cammarano ◽  
Claudio Faccenna ◽  
...  

&lt;p&gt;The Central Mediterranean, the area encompassing Italy, Sardinia, Tunisia and Libya, is characterised by multiple tectonic processes (plate convergence, subduction, and backarc extension). The evolution and interaction of the plate margins within this relatively small area are still being unravelled particularly at the adjacent region known as the Sicily Channel located between Sicily, Tunisia, Libya and Malta. This Channel is characterised by a seismically and volcanically active rift zone. Much of the observations we have today for the southern parts of the Calabrian arc are either limited to the surface and the upper crust, or are broader and deeper from regional seismic tomography, missing important details about the lithospheric structure and dynamics. The project GEOMED (https://geomed-msca.eu) addresses this issue by processing all the seismic data available in the region in order to understand better the geodynamics of the Central Mediterranean.&lt;/p&gt;&lt;p&gt;We measure Rayleigh- and Love-wave phase velocities from ambient seismic noise recordings to infer the structures of the Central Mediterranean, from the Central Apennines to the African foreland, with a special focus on the Sicily Channel Rift Zone (SCRZ). The phase-velocity dispersion curves have periods ranging from 5 to 100 seconds and sample through the entire lithosphere. We invert the dispersion data for isotropic and polarised shear velocities with depth and infer crustal thickness and patterns of radial anisotropy. We find that continental blocks have thick crust (30-50 km), whereas beneath the SCRZ the crust is thin (&lt;25 km), and thinner beneath the Tyrrhenian Sea. Beneath the SCRZ and the Tyrrhenian Sea, the crustal shear velocities are characterised by positive radial anisotropy (V&lt;sub&gt;SH&lt;/sub&gt;&gt;V&lt;sub&gt;SV&lt;/sub&gt;) indicative of horizontal flow or extension, whereas the uppermost mantle is characterised by slow shear velocities indicative of warmer temperatures and strong negative radial anisotropy (V&lt;sub&gt;SH&lt;/sub&gt;&gt;V&lt;sub&gt;SV&lt;/sub&gt;) indicative of vertical flow. We discuss the relevance of these findings together with other geophysical studies such as the regional seismicity and GPS velocity vectors to identify the rifting process type of the SCRZ.&lt;/p&gt;&lt;p&gt;This project has received funding from the European Union&amp;#8217;s Horizon 2020 research and innovation programme under the Marie Sk&amp;#322;odowska-Curie grant agreement No 843696.&lt;/p&gt;


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Seul-Hee Im ◽  
Soon-Il An ◽  
Matthieu Lengaigne ◽  
Yign Noh

This study investigated the seasonality of tropical instability waves (TIWs) and its feedback to the seasonal cycle in the tropical eastern Pacific using a high-resolution ocean model covering 1958–2007. The climatological mean of the TIWs featured intraseasonal fluctuations, implying that TIWs are not occurring randomly, but their amplitude is partly in phase from one year to another. This seasonality of TIW activity is attributed to their dependency on the seasonal mean variation of current and temperature. Energy conversion analysis confirmed that the strong variability of TIWs near 4°N was due to the barotropic energy conversion associated with the large meridional shear of NECC and SEC and that at another pole near 2°N was due to the baroclinic energy conversion associated with the temperature front in the mixed layer. The former and latter poles are somehow largely responsible for amplifying the dynamic and thermal eddies of TIWs, respectively. The intensified TIWs during a boreal fall increase the tropical eastern Pacific SST by associating the warm thermal advection by anomalous currents, with a rate of up to 1°C/month in September. Therefore, this leads to interactive feedback between seasonal and intraseasonal variations, that is, TIWs in the tropical eastern Pacific.


2011 ◽  
Vol 41 (1) ◽  
pp. 186-204 ◽  
Author(s):  
Rob A. Hall ◽  
Glenn S. Carter

Abstract The M2 internal tide in Monterey Submarine Canyon is simulated using a modified version of the Princeton Ocean Model. Most of the internal tide energy entering the canyon is generated to the south, on Sur Slope and at the head of Carmel Canyon. The internal tide is topographically steered around the large canyon meanders. Depth-integrated baroclinic energy fluxes are up canyon and largest near the canyon axis, up to 1.5 kW m−1 at the mouth of the upper canyon and increasing to over 4 kW m−1 around Monterey and San Gregorio Meanders. The up-canyon energy flux is bottom intensified, suggesting that topographic focusing occurs. Net along-canyon energy flux decreases almost monotonically from 9 MW at the canyon mouth to 1 MW at Gooseneck Meander, implying that high levels of internal tide dissipation occur. The depth-integrated energy flux across the 200-m isobath is order 10 W m−1 along the majority of the canyon rim but increases by over an order of magnitude near the canyon head, where internal tide energy escapes onto the shelf. Reducing the size of the model domain to exclude remote areas of high barotropic-to-baroclinic energy conversion decreases the depth-integrated energy flux in the upper canyon by 20%. However, quantifying the role of remote internal tide generation sites is complicated by a pressure perturbation feedback between baroclinic energy flux and barotropic-to-baroclinic energy conversion.


Sign in / Sign up

Export Citation Format

Share Document