scholarly journals Computation of a new Mean Dynamic Topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in-situ data

2014 ◽  
Vol 11 (1) ◽  
pp. 655-692 ◽  
Author(s):  
M.-H. Rio ◽  
A. Pascual ◽  
P.-M. Poulain ◽  
M. Menna ◽  
B. Barceló ◽  
...  

Abstract. The accurate knowledge of the ocean Mean Dynamic Topography (MDT) is a crucial issue for a number of oceanographic applications and in some areas of the Mediterranean Sea, important limitations have been found pointing to the need of an upgrade. We present a new Mean Dynamic Topography (MDT) that was computed for the Mediterranean Sea. It takes profit of improvements made possible by the use of extended datasets and refined processing. The updated dataset spans the 1993–2012 period and consists of: drifter velocities, altimetry data, hydrological profiles and model data. The methodology is similar to the previous MDT Rio et al. (2007). However, in Rio et al. (2007) no hydrological profiles had been taken into account. This has required the development of dedicated processing. A number of sensitivity studies have been carried out to obtain the most accurate MDT as possible. The main results from these sensitivity studies are the following: moderate impact to the choice of correlation scales but almost negligible sensitivity to the choice of the first guess (model solution). A systematic external validation to independent data has been made to evaluate the performance of the new MDT. Compared to previous version, SMDT-MED-2014 features shorter scales structures, which results in an altimeter velocity variance closer to the observed velocity variance and, at the same time, gives better Taylor skills.

Ocean Science ◽  
2014 ◽  
Vol 10 (4) ◽  
pp. 731-744 ◽  
Author(s):  
M.-H. Rio ◽  
A. Pascual ◽  
P.-M. Poulain ◽  
M. Menna ◽  
B. Barceló ◽  
...  

Abstract. The accurate knowledge of the ocean's mean dynamic topography (MDT) is a crucial issue for a number of oceanographic applications and, in some areas of the Mediterranean Sea, important limitations have been found pointing to the need of an upgrade. We present a new MDT that was computed for the Mediterranean Sea. It profits from improvements made possible by the use of extended data sets and refined processing. The updated data set spans the 1993–2012 period and consists of drifter velocities, altimetry data, hydrological profiles and model data. The methodology is similar to the previous MDT by Rio et al. (2007). However, in Rio et al. (2007) no hydrological profiles had been taken into account. This required the development of dedicated processing. A number of sensitivity studies have been carried out to obtain the most accurate MDT as possible. The main results from these sensitivity studies are the following: moderate impact to the choice of correlation scales but almost negligible sensitivity to the choice of the first guess (model solution). A systematic external validation to independent data has been made to evaluate the performance of the new MDT. Compared to previous versions, SMDT-MED-2014 (Synthetic Mean Dynamic Topography of the MEDiterranean sea) features shorter-scale structures, which results in an altimeter velocity variance closer to the observed velocity variance and, at the same time, gives better Taylor skills.


2020 ◽  
Vol 8 (9) ◽  
pp. 665
Author(s):  
Francis Gohin ◽  
Philippe Bryère ◽  
Alain Lefebvre ◽  
Pierre-Guy Sauriau ◽  
Nicolas Savoye ◽  
...  

The consistency of satellite and in situ time series of Chlorophyll-a (Chl-a), Turbidity and Total Suspended Matters (TSM) was investigated at 17 coastal stations throughout the year 2017. These stations covered different water types, from relatively clear waters in the Mediterranean Sea to moderately turbid regions in the Bay of Biscay and the southern bight of the North-Sea. Satellite retrievals were derived from MODIS/AQUA, VIIRS/NPP and OLCI-A/Sentinel-3 spectral reflectance. In situ data were obtained from the coastal phytoplankton networks SOMLIT (CNRS), REPHY (Ifremer) and associated networks. Satellite and in situ retrievals of the year 2017 were compared to the historical seasonal cycles and percentiles, 10 and 90, observed in situ. Regarding the sampling frequency in the Mediterranean Sea, a weekly in situ sampling allowed all major peaks in Chl-a caught from space to be recorded at sea, and, conversely, all in situ peaks were observed from space in a frequently cloud-free atmosphere. In waters of the Eastern English Channel, lower levels of Chl-a were observed, both in situ and from space, compared to the historical averages. However, despite a good overall agreement for low to moderate biomass, the satellite method, based on blue and green wavelengths, tends to provide elevated and variable Chl-a in a high biomass environment. Satellite-derived TSM and Turbidity were quite consistent with in situ measurements. Moreover, satellite retrievals of the water clarity parameters often showed a lower range of variability than their in situ counterparts did, being less scattered above and under the seasonal curves of percentiles 10 and 90.


2021 ◽  
Vol 13 (1) ◽  
pp. 85-97
Author(s):  
Ioannis Moutzouris-Sidiris ◽  
Konstantinos Topouzelis

Abstract The objective of this study is to evaluate the efficiency of two well-known algorithms (Ocean Colour 4 for MERIS [OC4Me] and neural net [NN]) used in the calculation of chlorophyll-a (Chl-a) from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) compared to in situ measurements covering the Mediterranean Sea. In situ data set, obtained from the Copernicus Marine Environmental Monitoring Service (CMEMS) and more specifically from the data set with the title INSITU_MED_NRT_OBSERVATIONS_013_035, and Chl-a values at different depths were extracted. The concentration of Chl-a at a penetration depth was calculated. Then, water was classified into two categories, Case-1 and Case-2. For Case-2 waters, the OC4Me presents a moderate correlation with the in situ data for a time window of 0–2 h. In contrast with the NN algorithm, where very weak correlations were calculated, lower values of the statistical index of Bias for Case-1 waters were calculated for the OC4Me algorithm. Higher values of Pearson correlation were calculated (r > 0.5) for OC4Me algorithm than NN. OC4Me performed better than NN.


2020 ◽  
Vol 12 (24) ◽  
pp. 4123
Author(s):  
Michela Sammartino ◽  
Bruno Buongiorno Nardelli ◽  
Salvatore Marullo ◽  
Rosalia Santoleri

Remote sensing data provide a huge number of sea surface observations, but cannot give direct information on deeper ocean layers, which can only be provided by sparse in situ data. The combination of measurements collected by satellite and in situ sensors represents one of the most effective strategies to improve our knowledge of the interior structure of the ocean ecosystems. In this work, we describe a Multi-Layer-Perceptron (MLP) network designed to reconstruct the 3D fields of ocean temperature and chlorophyll-a concentration, two variables of primary importance for many upper-ocean bio-physical processes. Artificial neural networks can efficiently model eventual non-linear relationships among input variables, and the choice of the predictors is thus crucial to build an accurate model. Here, concurrent temperature and chlorophyll-a in situ profiles and several different combinations of satellite-derived surface predictors are used to identify the optimal model configuration, focusing on the Mediterranean Sea. The lowest errors are obtained when taking in input surface chlorophyll-a, temperature, and altimeter-derived absolute dynamic topography and surface geostrophic velocity components. Network training and test validations give comparable results, significantly improving with respect to Mediterranean climatological data (MEDATLAS). 3D fields are then also reconstructed from full basin 2D satellite monthly climatologies (1998–2015) and resulting 3D seasonal patterns are analyzed. The method accurately infers the vertical shape of temperature and chlorophyll-a profiles and their spatial and temporal variability. It thus represents an effective tool to overcome the in-situ data sparseness and the limits of satellite observations, also potentially suitable for the initialization and validation of bio-geophysical models.


2016 ◽  
Vol 7 (6) ◽  
pp. 591-600 ◽  
Author(s):  
Jaime Pitarch ◽  
Marco Bellacicco ◽  
Gianluca Volpe ◽  
Simone Colella ◽  
Rosalia Santoleri

1997 ◽  
Author(s):  
Rosalia Santoleri ◽  
Bruno Buongiorno Nardelli ◽  
Daniele Iudicone ◽  
Simona Zoffoli ◽  
Salvatore Marullo

Sign in / Sign up

Export Citation Format

Share Document