scholarly journals The ubiquitin ligase c-CBL is expressed in undifferentiated marmoset monkey pluripotent stem cells but is not a general stem cell marker

2017 ◽  
Vol 4 (2) ◽  
pp. 231-240
Author(s):  
Ignacio Rodriguez-Polo ◽  
Maike Nielsen ◽  
Katharina Debowski ◽  
Rüdiger Behr

Abstract. The protein c-CBL is a ubiquitin ligase. It catalyzes the last step of the transfer of ubiquitin to target proteins. Upon completion of polyubiquitination, the target proteins are degraded. Clinically, it is important that c-CBL is mutated in a subset of patients who develop myeloid malignancies, which are diseases of the hematopoietic stem or progenitor cells. c-CBL has also been shown to be expressed by human spermatogonia. The whole spermatogonial cell population possesses a subset that comprises also the spermatogonial stem cells. Based on these findings we hypothesized that c-CBL might be a general stem cell marker. To test this, we first validated the antibody using marmoset bone marrow and adult testis. In both tissues, the expected staining pattern was observed. Western blot analysis revealed only one band of the expected size. Then, we examined the expression of c-CBL in marmoset monkey embryonic stem (ES) cells, induced pluripotent stem (iPS) cells and adult stem cells. We found that c-CBL is strongly expressed in undifferentiated marmoset iPS cells and ES cells. However, adult stem cells in the gut and the stomach did not express c-CBL, indicating that c-CBL is not a general stem cell marker. In summary, c-CBL is strongly expressed in pluripotent stem cells of the marmoset monkey as well as in selected adult stem cell types. Future studies will define the function of c-CBL in pluripotent stem cells.

2011 ◽  
Vol 23 (1) ◽  
pp. 243 ◽  
Author(s):  
S.-A. Choi ◽  
J.-H. Lee ◽  
K.-J. Kim ◽  
E.-Y. Kim ◽  
K.-S. Park ◽  
...  

Adult stem cells have the capacity to differentiate into several different cell types, although their differentiation potential is limited compared with that of embryonic stem cells. Thus, adult stem cells are regarded as an exciting source for new cell therapies. Recent observations also indicate that stem cells derived from second-trimester amniocentesis are pluripotent – capable of differentiating into multiple lineages, including representatives of all 3 embryonic germ layers. In addition, amniotic fluid stem cells can be used in the generation of disease- or patient-specific stem cells, and amniotic fluid stem cells could be an ideal source for autologous cell replacement therapy in the later life of the fetus. The aim of the present study was to investigate isolation and characterisation of human amniotic fluid-derived mesenchymal stem cells (hAFS). We successfully isolated and characterised hAFS. Amniotic fluid samples were collected in the second trimester (median gestational age: 16 weeks, range: 15–17 weeks) for prenatal diagnosis. Specimens (2 mL) were centrifuged and incubated in low-glucose DMEM supplemented with 10% FBS, 25 ng of basic fibroblast growth factor, and 10 ng of epidermal growth factor at 37°C with 5% CO2. Human amniotic fluid cell (passage 6) expression of stem cell specific markers OCT-4, SOX2, Rex1, FGF4, and NANOG was confirmed by RT-PCR. Flow cytometric analysis showed that hAFS (passage 10) were positive for CD44, CD29, CD146, STRO1, and CD90 but negative for CD19. Immunocytochemical analysis of hAFS (passage 11) also showed the expression of OCT-4, SSEA-1, CD44, CD29, CD146, STRO1, and CD90, but hAFS were negative for CD19 and CD14. In conclusion, according to the previous studies on other mammalians, hAFS are an appropriate source of pluripotent stem cells. Here, we demonstrated that hAFS have a high expression of stem cell specific marker, including embryonic stem cell marker and mesenchymal stem cell marker. Therefore, amniotic fluid may be a suitable alternative source of multipotent stem cells.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 102 ◽  
Author(s):  
Mei Kuen Tang ◽  
Lok Man Lo ◽  
Wen Ting Shi ◽  
Yao Yao ◽  
Henry Siu Sum Lee ◽  
...  

Currently, there are genetic- and chemical-based methods for producing pluripotent stem cells from somatic cells, but all of them are extremely inefficient.  However, a simple and efficient technique has recently been reported by Obokata et al (2014a, b) that creates pluripotent stem cells through acid-based treatment of somatic cells.  These cells were named stimulus-triggered acquisition of pluripotency (STAP) stem cells. This would be a major game changer in regenerative medicine if the results could be independently replicated. Hence, we isolated CD45+ splenocytes from five-day-old Oct4-GFP mice and treated the cells with acidified (pH 5.7) Hank’s Balanced Salt Solution (HBSS) for 25 min, using the methods described by Obokata et al 2014c. However, we found that this method did not induce the splenocytes to express the stem cell marker Oct4-GFP when observed under a confocal microscope three to six days after acid treatment. qPCR analysis also confirmed that acid treatment did not induce the splenocytes to express the stemness markers Oct4, Sox2 and Nanog.  In addition, we obtained similar results from acid-treated Oct4-GFP lung fibroblasts. In summary, we have not been able to produce STAP stem cells from neonatal splenocytes or lung fibroblasts using the acid-based treatment reported by Obokata et al (2014a, b, c).


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Ralph P. Schneider ◽  
Ianire Garrobo ◽  
Miguel Foronda ◽  
Jose A. Palacios ◽  
Rosa M. Marión ◽  
...  

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Ralph P. Schneider ◽  
Ianire Garrobo ◽  
Miguel Foronda ◽  
Jose A. Palacios ◽  
Rosa M. Marión ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Beatrice Paradiso ◽  
Enzo Bianchini ◽  
Pierangelo Cifelli ◽  
Luigi Cavazzini ◽  
Giovanni Lanza

We report a new case of p63/cytokeratin 7 (CK7) positive syringocystadenocarcinoma papilliferum (SCACP), on the shoulder of an 88-year-old man, with superficial dermal infiltration and squamoid differentiation. We describe the 24th case of SCACP, the malignant counterpart of syringocystadenoma papilliferum (SCAP). At the present, we do not know whether SCACP arises from eccrine or apocrine glands because of the contrasting opinions in the literature. Only few histochemical and ultrastructural studies have previously advised that SCACP could arise from pluripotent stem cells. Through our case, we wish to suggest the stem cell-like properties of the syringocystadenocarcinoma papilliferum. This rare neoplasm shows two different patterns of stem cell marker expression in the glandular and squamous components, respectively. For the double phenotype of SCACP, we propose it like an intriguing model to study histogenesis and stem cell properties for more wide-ranging epithelial tumors.


Sign in / Sign up

Export Citation Format

Share Document