scholarly journals From submarine to lacustrine groundwater discharge

Author(s):  
J. Lewandowski ◽  
K. Meinikmann ◽  
F. Pöschke ◽  
G. Nützmann ◽  
D. O. Rosenberry

Abstract. Submarine groundwater discharge (SGD) and its role in marine nutrient cycling are well known since the last decade. The freshwater equivalent, lacustrine groundwater discharge (LGD), is often still disregarded, although first reports of LGD are more than 50 years old. We identify nine different reasons why groundwater has long been disregarded in both freshwater and marine environments such as invisibility of groundwater discharge, the size of the interface and its difficult accessibility. Although there are some fundamental differences in the hydrology of SGD and LGD, caused primarily by seawater recirculation that occurs only in cases of SGD, there are also a lot of similarities such as a focusing of discharge to near-shore areas. Nutrient concentrations in groundwater near the groundwater–surface water interface might be anthropogenically enriched. Due to spatial heterogeneity of aquifer characteristics and biogeochemical processes, the quantification of groundwater-borne nutrient loads is challenging. Both nitrogen and phosphorus might be mobile in near-shore aquifers and in a lot of case studies large groundwater-borne nutrient loads have been reported.

2019 ◽  
Vol 579 ◽  
pp. 124192 ◽  
Author(s):  
Carlos Duque ◽  
Karen L. Knee ◽  
Christopher J. Russoniello ◽  
Mahmoud Sherif ◽  
Usama A. Abu Risha ◽  
...  

2012 ◽  
Vol 35 (5) ◽  
pp. 1299-1315 ◽  
Author(s):  
Kimberly A. Null ◽  
Natasha T. Dimova ◽  
Karen L. Knee ◽  
Bradley K. Esser ◽  
Peter W. Swarzenski ◽  
...  

2021 ◽  
Author(s):  
Catia Milene Ehlert von Ahn ◽  
Jan Scholten ◽  
Christoph Malik ◽  
Peter Feldens ◽  
Bo Liu ◽  
...  

<p>Submarine groundwater discharge (SGD) acts as a source of fresh water and dissolved substances for coastal ecosystems. Evaluation of the actual controls on SGD and corresponding chemical fluxes require a closer understanding of the processes that take place in the mixing zone between SGD and the coastal waters. It is hypothesized that artificial infrastructures, like sediment channeling, may ease the hydrological connection between coastal aquifer and coastal bottom water. The resultant, increase of SGD, changes the residence time in the mixing zone, and thereby, reduces the impact of early diagenesis. The present study focuses on the distribution of SGD, including the characterization of different mixing zones in the urbanized Wismar Bay (WB), southern Baltic Sea. Short sediment cores were retrieved for geochemical porewaters and sediment analyses. Surface sea water samples were collected along across-shore transects in the WB.  Besides major ions, Ba, Fe, and Mn, the water samples were analyzed for nutrients, dissolved inorganic carbon (DIC), stable isotopes (H, O, C, S), and Ra isotopes. Sediments were analyzed for C, N, S, Hg contents as well as reactive components (e.g. Fe, Mn, P) by HCl extractions. Organic matter mineralization rates, DIC, and SO<sub>4</sub> fluxes for the sediment-water interface were modeled from porewater profiles. Shallow seismic techniques were applied to identify potential litho-morphological controls on SGD. Geochemical porewater data allow identification of active SGD sites in the WB. In the central part, the freshening of porewaters in the top surface sediments indicates the upward flow of SGD originating from a coastal aquifer. The acoustic profiles show that the bottom sediments in the central bay are under local impact of excavation, reducing the sediment thickness above the coastal aquifer. Overall, the impact of SGD on the coastal water body of the WB is diffuse and promoted by local anthropogenic activity. The water isotope composition of porewaters at this site are close to the local meteoric water line at Warnemünde (located 50 km east of the WB), suggesting a discharge of relatively modern fresh waters. The (isotope) hydrochemical composition of the fresh water discharging is controlled by water-rock interactions in the aquifer and modulated by intense diagenesis in the brackish surface sediments. Furthermore, the SGD facilitates the upward migration of elements and enhances their fluxes across the sediment-water interface, e.g. DIC concentrations in the fresh groundwater are further enhanced in the mixing zone, indicating that SGD is a potential source of excess CO<sub>2</sub> in the investigated coastal waters.</p><p>The investigations are supported by the DAAD, DFG RTS Baltic TRANSCOAST, KiSnet project, BONUS SEAMOUNT, FP7 EU Marie Curie career integration grant, DAM-MFG, and IOW.</p>


2020 ◽  
Author(s):  
Murugan Ramasamy ◽  
Suresh Babu ◽  
Reji Srinivas

<p>Submarine groundwater discharge (SGD) is a possible source for nutrients and anthropogenic pollutants that flow from the land to the ocean. The coastal zone of southwest (SW) India is capped with Tertiary sandstone-limestone-clay intercalations, Quaternary sediments, and laterites up to 600 m thickness above bedrock, which are considered as productive aquifer belts. The signatures of freshwater discharge to sea are not entirely vivid on the SW coast of India due to different constraints on investigation techniques and coastal dynamics. Hence, an onshore and offshore sampling and monitoring were carried out from Kanyakumari to Mangalore (∼640 km) along the SW coast of India to understand the groundwater discharge from the coastal aquifer system. The combined techniques used make it possible to identify groundwater outflows using satellite thermal infrared images to monitor physico-chemical anomalies in the sea (from 7 October – 5 November 2019 onboard the Sakar Kanya research vessel). Surface-to-bottom CTD (conductivity, temperature, depth) profiling and sampling of radium and nutrients were performed during fieldwork. The conventional water balance method and radium isotopic analyses were used to quantify the SGD. The findings of the water balance method show that the average of all fresh SGD is 790 m<sup>3</sup>/y/m with a minimum of 72 m<sup>3</sup>/y/m and a maximum of 2070 m<sup>3</sup>/y/m exported by SW coast to the sea. Regional precipitation patterns and coastal drainage geometry control local variation in fresh SGD. Nutrient concentrations have apparently followed conservative and non-concentrative mixing between fresh, high nutrient groundwater and saline, low-nutrient seawater at coastal ocean sites. Further investigations are in progress for flux estimation using radium isotopes in offshore and deployment of seepage meters in specific known areas along the shore.</p>


Sign in / Sign up

Export Citation Format

Share Document