scholarly journals Multiple sensors applied to monitorland subsidence in Central Taiwan

Author(s):  
W.-C. Hung ◽  
C. Wang ◽  
C. Hwang ◽  
Y.-A. Chen ◽  
H.-C. Chiu ◽  
...  

Abstract. During 1992–2013, pumping of groundwater caused large-scale aquifer-system compaction and land subsidence in the Choshui River Alluvial Fan (CRAF) in Taiwan. The subsidence has already endangered the operation of Taiwan High Speed Rail (THSR). In this paper, we introduce the multiple sensors monitoring system to study the extent of subsidence in CRAF and its mechanism, including GPS (Global Positioning System), PSI (Persistent Scatterer Interferometry), leveling and multi-layer compaction monitoring well. These sensors complement each other in spatial and temporal resolutions.

Author(s):  
Wei-Chia Hung ◽  
Yi-An Chen ◽  
Cheinway Hwang

Abstract. Over 1992–2018, groundwater overexploitation had caused large-scale land subsidence in the Choshui River Alluvial Fan (CRAF) in Taiwan. The Taiwan High Speed Railway (THSR) passes through an area of severe subsidence in CRAF, and the subsidence poses a serious threat to its operation. How to effectively monitor land subsidence here has become a major issue in Taiwan. In this paper, we introduce a multiple-sensor monitoring system for land subsidence, including 50 continuous operation reference stations (CORS), multi temporal InSAR (MT-InSAR), a 1000 km levelling network, 34 multi-layer compaction monitoring wells and 116 groundwater monitoring wells. This system can monitor the extent of land subsidence and provide data for studying the mechanism of land subsidence. We use the Internet of Things (IoT) technology to control and manage the sensors and develop a bigdata processing procedure to analyse the monitoring data for the system of sensors. The procedure makes the land subsidence monitoring more efficient and intelligent.


Author(s):  
Xudong Gao

China is a developing country but has made impressive progress in technological capability development. One strategy proved to be effective is the use of large-scale programs to help technological capability development. Examples include the subway equipment industry, the high-speed rail industry, the power generation equipment industry, the power transmission industry, the telecom equipment industry, etc. In all these sectors, China was lagging behind the technological innovation frontier before the related large-scale programs but is now among the world leaders. In this chapter we will try to understand the process of initiating and managing these large-scale programs.


2020 ◽  
Vol 12 (19) ◽  
pp. 3207
Author(s):  
Ioannis Papoutsis ◽  
Charalampos Kontoes ◽  
Stavroula Alatza ◽  
Alexis Apostolakis ◽  
Constantinos Loupasakis

Advances in synthetic aperture radar (SAR) interferometry have enabled the seamless monitoring of the Earth’s crust deformation. The dense archive of the Sentinel-1 Copernicus mission provides unprecedented spatial and temporal coverage; however, time-series analysis of such big data volumes requires high computational efficiency. We present a parallelized-PSI (P-PSI), a novel, parallelized, and end-to-end processing chain for the fully automated assessment of line-of-sight ground velocities through persistent scatterer interferometry (PSI), tailored to scale to the vast multitemporal archive of Sentinel-1 data. P-PSI is designed to transparently access different and complementary Sentinel-1 repositories, and download the appropriate datasets for PSI. To make it efficient for large-scale applications, we re-engineered and parallelized interferogram creation and multitemporal interferometric processing, and introduced distributed implementations to best use computing cores and provide resourceful storage management. We propose a new algorithm to further enhance the processing efficiency, which establishes a non-uniform patch grid considering land use, based on the expected number of persistent scatterers. P-PSI achieves an overall speed-up by a factor of five for a full Sentinel-1 frame for processing in a 20-core server. The processing chain is tested on a large-scale project to calculate and monitor deformation patterns over the entire extent of the Greek territory—our own Interferometric SAR (InSAR) Greece project. Time-series InSAR analysis was performed on volumes of about 12 TB input data corresponding to more than 760 Single Look Complex Sentinel-1A and B images mostly covering mainland Greece in the period of 2015–2019. InSAR Greece provides detailed ground motion information on more than 12 million distinct locations, providing completely new insights into the impact of geophysical and anthropogenic activities at this geographic scale. This new information is critical to enhancing our understanding of the underlying mechanisms, providing valuable input into risk assessment models. We showcase this through the identification of various characteristic geohazard locations in Greece and discuss their criticality. The selected geohazard locations, among a thousand, cover a wide range of catastrophic events including landslides, land subsidence, and structural failures of various scales, ranging from a few hundredths of square meters up to the basin scale. The study enriches the large catalog of geophysical related phenomena maintained by the GeObservatory portal of the Center of Earth Observation Research and Satellite Remote Sensing BEYOND of the National Observatory of Athens for the opening of new knowledge to the wider scientific community.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jing Zuo ◽  
Jianwu Dang ◽  
Min Lyu

In large-scale high-speed rail networks (HSRNs), the occurrence of occasional malfunctions or accidents is unavoidable. The key issue considered in this study is the optimal allocation of the maintenance costs, based on the stochastic risk assessment for HSRNs. Inspired by the theoretical risk evaluation methods in the complex network, three major factors, including the local effects, global effects, and component self-effects are considered in the process of assessing the impact on the network components (nodes or lines). By introducing the component failure occurrence probability, which is considered to be an exponential function changing with the component maintenance costs, a feasible stochastic risk assessment model of the HSRNs together with the component impact assessment is proposed that can better unify the impact assessment of both the high-speed rail stations and railways. An optimal allocation algorithm based on a Lagrangian relaxation approach is designed. Correspondingly, the optimal cost allocation scheme can be determined using the algorithm to eliminate the various HSRN risks under the given costs. Furthermore, a real-world case study of the HSRNs in eastern China is illustrated. Compared with the genetic algorithm, the simulation shows that the approach can solve the optimal cost allocation problem to more effectively reduce the risks of large-scale HSRNs in practice.


2021 ◽  
Vol 13 (12) ◽  
pp. 2281
Author(s):  
Yi-An Chen ◽  
Chung-Pai Chang ◽  
Wei-Chia Hung ◽  
Jiun-Yee Yen ◽  
Chih-Heng Lu ◽  
...  

Land subsidence is a significant problem around the world that can increase the risk of flooding, damage to infrastructure, and economic loss. Hence, the continual monitoring of subsidence is important for early detection, mechanism understanding, countermeasure implementation, and deformation prediction. In this study, we used multiple-sensor observations from the Continuous Global Positioning System (CGPS), the small baseline subset (SBAS) algorithm, interferometric synthetic-aperture radar (InSAR), precise leveling, multi-layer compaction monitoring wells (MLCWs), and groundwater observation wells (GWs) to show the spatial and temporal details of land subsidence in the Choushui River alluvial fan (CRAF), Taiwan, from 1993 to 2019. The results showed that significant land subsidence has occurred along the coastal areas in the CRAF, and most of the inland subsidence areas have also experienced higher subsidence rates (>30 mm/yr). The analysis of subsidence along the Taiwan High Speed Rail (THSR) revealed a newly formed subsidence center between Tuku and Yuanchang Townships in Yunlin, with high subsidence rates ranging from 30 to 70 mm/yr. We propose a map showing, for the first time, the distribution of deep compactions occurring below 300 m depth in the CRAF.


2011 ◽  
Vol 213 ◽  
pp. 107-110 ◽  
Author(s):  
Bin Peng ◽  
Bing Xia ◽  
Zhen Ling Liu

This impacts of high-speed rail transit, such as the Japanese Shinkansen the first high-speed rail in the world, has been contributed on regional structure or regional systems. The previous study has been mainly centered on many aspects. Does construction of high-speed rail transit in less-developed or remote regions lead to economic activity or population dispersion from developed regions, and thus, lead to the reduced regional disparities? Traditionally, answers to such questions would be obtained through large-scale multi-regional econometric models, which are capable of predicting inter-regional trade. Detailed models are more general in the sense that they can provide richer information in response to various policy variables. The construction of high-speed rail (HSR) is very populous in China. It is no doubt that the HSR will have great impact on the regional development and bring great beneficial economic and social effects. In this paper, the HSR and impact on the regional development is summarized. The first high-speed intercity line from Beijing to Tianjin, which became operational since 2008, has being creating positive impacts on regional economic development and other aspects.


2020 ◽  
Author(s):  
Chung-Chieh Huang ◽  
Hong-Ru Lin ◽  
Jyun-Lin Chen ◽  
Shao-Yang Huang ◽  
Jet-Chau Wen ◽  
...  

<p>         Since the successful launch of the Gravity Recovery and Climate Experiment (GRACE) on March 17<sup>th</sup>, 2002, a number of scientists have adopted satellite gravimetry for the detection of variations on terrestrial water storage (TWS). Use of high-precision GRACE gravimetry presents advantages in hydrogeologic studies, such as providing accurate estimates of currents and gravity fields. Many studies have proven that the high-precision GRACE gravimetry can observe large-scale (over 50,000 km<sup>2</sup>) variations in groundwater storage (GWS). However, relatively few studies conducted using satellite gravimetry have focused on scales smaller than 5,000 km<sup>2</sup>.</p><p>        The purpose of this study is to investigate the potential for using GRACE gravimetry to observe small-scale variations in GWS specifically, this paper presents a case study of the Zhoushui River alluvial fan (~2,560 km<sup>2</sup>) in central Taiwan as an example of how well GRACE data compare to field-based data for ascertaining small-scale variations in GWS. Field measurements of groundwater level in 52 observation wells (2002-2017) were used to analyze variations in GWS. Results of this field-based analysis were compared to results obtained using the GWS data (2002-2017) obtained by GRACE gravimetry. This comparison allowed us to evaluate the similarities and differences in both methods as well as to prove the feasibility of using GRACE gravimetry in small-scale regions. Results of our comparative analysis indicate that water resources in small watershed can be successfully managed using gravimetric data collected by GRACE satellite.</p><p> </p><p>Keywords: Groundwater storage, GRACE, Watershed</p>


Sign in / Sign up

Export Citation Format

Share Document