Detect groundwater storage in an island watershed by GRACE gravimetry

Author(s):  
Chung-Chieh Huang ◽  
Hong-Ru Lin ◽  
Jyun-Lin Chen ◽  
Shao-Yang Huang ◽  
Jet-Chau Wen ◽  
...  

<p>         Since the successful launch of the Gravity Recovery and Climate Experiment (GRACE) on March 17<sup>th</sup>, 2002, a number of scientists have adopted satellite gravimetry for the detection of variations on terrestrial water storage (TWS). Use of high-precision GRACE gravimetry presents advantages in hydrogeologic studies, such as providing accurate estimates of currents and gravity fields. Many studies have proven that the high-precision GRACE gravimetry can observe large-scale (over 50,000 km<sup>2</sup>) variations in groundwater storage (GWS). However, relatively few studies conducted using satellite gravimetry have focused on scales smaller than 5,000 km<sup>2</sup>.</p><p>        The purpose of this study is to investigate the potential for using GRACE gravimetry to observe small-scale variations in GWS specifically, this paper presents a case study of the Zhoushui River alluvial fan (~2,560 km<sup>2</sup>) in central Taiwan as an example of how well GRACE data compare to field-based data for ascertaining small-scale variations in GWS. Field measurements of groundwater level in 52 observation wells (2002-2017) were used to analyze variations in GWS. Results of this field-based analysis were compared to results obtained using the GWS data (2002-2017) obtained by GRACE gravimetry. This comparison allowed us to evaluate the similarities and differences in both methods as well as to prove the feasibility of using GRACE gravimetry in small-scale regions. Results of our comparative analysis indicate that water resources in small watershed can be successfully managed using gravimetric data collected by GRACE satellite.</p><p> </p><p>Keywords: Groundwater storage, GRACE, Watershed</p>

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Wenjie Yin ◽  
Litang Hu ◽  
Jiu Jimmy Jiao

Dynamic change of groundwater storage is one of the most important topics in the sustainable management of groundwater resources. Groundwater storage variations are firstly isolated from the terrestrial water storage change using the Global Land Data Assimilation System (GLDAS). Two datasets are used: (1) annual groundwater resources and (2) groundwater storage changes estimated from point-based groundwater level data in observation wells. Results show that the match between the GRACE-derived groundwater storage variations and annual water resources variation is not good in six river basins of Northern China. However, it is relatively good between yearly GRACE-derived groundwater storage data and groundwater storage change dataset in Huang-Huai-Hai Plain and the Song-Liao Plain. The mean annual depletion rate of groundwater storage in the Northern China was approximately 1.70 billion m3 yr−1 from 2003 to 2012. In terms of provinces, the yearly depletion rate is higher in Jing-Jin-Ji (Beijing, Tianjin, and Hebei province) and lowest in Henan province from 2003 to 2012, with the rate of 0.70 and 0.21 cm yr−1 Equivalent Water Height (EWH), respectively. Different land surface models suggest that the patterns from different models almost remain the same, and soil moisture variations are generally bigger than snow water equivalent variations.


2019 ◽  
Vol 630 ◽  
pp. A99 ◽  
Author(s):  
A. Lavail ◽  
O. Kochukhov ◽  
G. A. J. Hussain

Aims. In this paper, we aim to characterise the surface magnetic fields of a sample of eight T Tauri stars from high-resolution near-infrared spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are firstly to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, secondly to expand the sample of stars with measured surface magnetic field strengths, thirdly to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and fourthly to compare the magnetic field modulus ⟨B⟩ tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging (ZDI) studies. Methods. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-infrared K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. Results. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of ⟨B⟩ with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25–42% for relatively simple poloidal axisymmetric field topologies to 2–11% for more complex fields.


2015 ◽  
Vol 73 (suppl_1) ◽  
pp. i5-i14 ◽  
Author(s):  
F. G. O'Neill ◽  
A. Ivanović

Abstract An improved understanding of the physical interaction of towed demersal fishing gears with the seabed has been developed in recent years, and there is a clearer view of the underpinning mechanical processes that lead to the modification and alteration of the benthic environment. The physical impact of these gears on soft sediments can be classified broadly as being either geotechnical or hydrodynamic in nature: penetration and piercing of the substrate, lateral displacement of sediment, and the influence of the pressure field transmitted through the sediment can be considered geotechnical, whereas the mobilization of sediment into the water column can be considered hydrodynamic. A number of experimental and numerical approaches have been used to gain better insights of these physical processes. These include small-scale modelling in towing tanks and sand channels; large-scale modelling in the field; measurements behind full-scale towed gears at sea; numerical/mathematical modelling of sediment mechanics; and numerical/mathematical modelling of hydrodynamics. Here, we will review this research, and that in associated fields, and show how it can form the basis of predictive models of the benthic impact of trawl gears.


2005 ◽  
Vol 23 (2) ◽  
pp. 487-498 ◽  
Author(s):  
H. C. Scoffield ◽  
T. K. Yeoman ◽  
D. M. Wright ◽  
S. E. Milan ◽  
A. N. Wright ◽  
...  

Abstract. On 14 December 1999, a large-scale ULF wave event was observed by the Hankasalmi radar of the SuperDARN chain. Simultaneously, the FAST satellite passed through the Hankasalmi field-of-view, measuring the magnetic field oscillations of the wave at around 2000km altitude, along with the precipitating ion and electron populations associated with these fields. A simple field line resonance model of the wave has been created and scaled using the wave's spatial and temporal characteristics inferred from SuperDARN and IMAGE magnetometer data. Here the model calculated field-aligned current is compared with field-aligned currents derived from the FAST energetic particle spectra and magnetic field measurements. This comparison reveals the small-scale structuring and energies of the current carriers in a large-scale Alfvén wave, a topic, which at present, is of considerable theoretical interest. When FAST traverses a region of the wave involving low upward field-aligned current densities, the current appears to be carried by unstructured downgoing electrons of energies less than 30eV. A downward current region appears to be carried partially by upgoing electrons below the FAST energy detection threshold, but also consists of a mixture of hotter downgoing magnetospheric electrons and upgoing ionospheric electrons of energies <30eV, with the hotter upgoing electrons presumably representing those upgoing electrons which have been accelerated by the wave field above the low energy detection threshold of FAST. A stronger interval of upward current shows that small-scale structuring of scale ~50km has been imposed on the current carriers, which are downgoing magnetospheric electrons of energy 0-500eV.


2017 ◽  
Vol 551 ◽  
pp. 397-406 ◽  
Author(s):  
Yin Tang ◽  
Milad Hooshyar ◽  
Tingju Zhu ◽  
Claudia Ringler ◽  
Alexander Y. Sun ◽  
...  

2021 ◽  
Vol 13 (17) ◽  
pp. 3513
Author(s):  
Shoaib Ali ◽  
Dong Liu ◽  
Qiang Fu ◽  
Muhammad Jehanzeb Masud Cheema ◽  
Quoc Bao Pham ◽  
...  

Groundwater has a significant contribution to water storage and is considered to be one of the sources for agricultural irrigation; industrial; and domestic water use. The Gravity Recovery and Climate Experiment (GRACE) satellite provides a unique opportunity to evaluate terrestrial water storage (TWS) and groundwater storage (GWS) at a large spatial scale. However; the coarse resolution of GRACE limits its ability to investigate the water storage change at a small scale. It is; therefore; needed to improve the resolution of GRACE data at a spatial scale applicable for regional-level studies. In this study; a machine-learning-based downscaling random forest model (RFM) and artificial neural network (ANN) model were developed to downscale GRACE data (TWS and GWS) from 1° to a higher resolution (0.25°). The spatial maps of downscaled TWS and GWS were generated over the Indus basin irrigation system (IBIS). Variations in TWS of GRACE in combination with geospatial variables; including digital elevation model (DEM), slope; aspect; and hydrological variables; including soil moisture; evapotranspiration; rainfall; surface runoff; canopy water; and temperature; were used. The geospatial and hydrological variables could potentially contribute to; or correlate with; GRACE TWS. The RFM outperformed the ANN model and results show Pearson correlation coefficient (R) (0.97), root mean square error (RMSE) (11.83 mm), mean absolute error (MAE) (7.71 mm), and Nash–Sutcliffe efficiency (NSE) (0.94) while comparing with the training dataset from 2003 to 2016. These results indicate the suitability of RFM to downscale GRACE data at a regional scale. The downscaled GWS data were analyzed; and we observed that the region has lost GWS of about −9.54 ± 1.27 km3 at the rate of −0.68 ± 0.09 km3/year from 2003 to 2016. The validation results showed that R between downscaled GWS and observational wells GWS are 0.67 and 0.77 at seasonal and annual scales with a confidence level of 95%, respectively. It can; therefore; be concluded that the RFM has the potential to downscale GRACE data at a spatial scale suitable to predict GWS at regional scales.


2021 ◽  
Author(s):  
Jesse C. Anderson ◽  
Subin Thomas ◽  
Prasanth Prabhakaran ◽  
Raymond A. Shaw ◽  
Will Cantrell

Abstract. Microphysical processes are important for the development of clouds and thus Earth's climate. For example, turbulent fluctuations in the water vapor concentration, r, and temperature, T, cause fluctuations in the saturation ratio, S. Because S is the driving factor in the condensational growth of droplets, fluctuations may broaden the cloud droplet size distribution due to individual droplets experiencing different growth rates. The small scale turbulent fluctuations in the atmosphere that are relevant to cloud droplets are difficult to quantify through field measurements. We investigate these processes in the laboratory, using Michigan Tech's Π Chamber. The Π Chamber utilizes Rayleigh-Benard convection (RBC) to create the turbulent conditions inherent in clouds. In RBC it is common for a large scale circulation (LSC) to form. As a consequence of the LSC, the temperature field of the chamber is not spatially uniform. In this paper, we characterize the LSC in the Π chamber and show how it affects the shape of the distributions of r, T and S. The LSC was found to follow a single roll with an updraft and downdraft along opposing walls of the chamber. Near the updraft (downdraft), the distributions of T and r were positively (negatively) skewed. S consistently had a negatively skewed distribution, with the downdraft being the most negative.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dong Jiang ◽  
Jianhua Wang ◽  
Yaohuan Huang ◽  
Kang Zhou ◽  
Xiangyi Ding ◽  
...  

The Gravity Recovery and Climate Experiment (GRACE) satellite provides a new method for terrestrial hydrology research, which can be used for improving the monitoring result of the spatial and temporal changes of water cycle at large scale quickly. The paper presents a review of recent applications of GRACE data in terrestrial hydrology monitoring. Firstly, the scientific GRACE dataset is briefly introduced. Recently main applications of GRACE data in terrestrial hydrological monitoring at large scale, including terrestrial water storage change evaluation, hydrological components of groundwater and evapotranspiration (ET) retrieving, droughts analysis, and glacier response of global change, are described. Both advantages and limitations of GRACE data applications are then discussed. Recommendations for further research of the terrestrial water monitoring based on GRACE data are also proposed.


2011 ◽  
Vol 677 ◽  
pp. 530-553 ◽  
Author(s):  
A. TRAXLER ◽  
S. STELLMACH ◽  
P. GARAUD ◽  
T. RADKO ◽  
N. BRUMMELL

Double-diffusive instabilities are often invoked to explain enhanced transport in stably stratified fluids. The most-studied natural manifestation of this process, fingering convection, commonly occurs in the ocean's thermocline and typically increases diapycnal mixing by 2 orders of magnitude over molecular diffusion. Fingering convection is also often associated with structures on much larger scales, such as thermohaline intrusions, gravity waves and thermohaline staircases. In this paper, we present an exhaustive study of the phenomenon from small to large scales. We perform the first three-dimensional simulations of the process at realistic values of the heat and salt diffusivities and provide accurate estimates of the induced turbulent transport. Our results are consistent with oceanic field measurements of diapycnal mixing in fingering regions. We then develop a generalized mean-field theory to study the stability of fingering systems to large-scale perturbations using our calculated turbulent fluxes to parameterize small-scale transport. The theory recovers the intrusive instability, the collective instability and the γ-instability as limiting cases. We find that the fastest growing large-scale mode depends sensitively on the ratio of the background gradients of temperature and salinity (the density ratio). While only intrusive modes exist at high density ratios, the collective and γ instabilities dominate the system at the low density ratios where staircases are typically observed. We conclude by discussing our findings in the context of staircase-formation theory.


Author(s):  
Wei-Chia Hung ◽  
Yi-An Chen ◽  
Cheinway Hwang

Abstract. Over 1992–2018, groundwater overexploitation had caused large-scale land subsidence in the Choshui River Alluvial Fan (CRAF) in Taiwan. The Taiwan High Speed Railway (THSR) passes through an area of severe subsidence in CRAF, and the subsidence poses a serious threat to its operation. How to effectively monitor land subsidence here has become a major issue in Taiwan. In this paper, we introduce a multiple-sensor monitoring system for land subsidence, including 50 continuous operation reference stations (CORS), multi temporal InSAR (MT-InSAR), a 1000 km levelling network, 34 multi-layer compaction monitoring wells and 116 groundwater monitoring wells. This system can monitor the extent of land subsidence and provide data for studying the mechanism of land subsidence. We use the Internet of Things (IoT) technology to control and manage the sensors and develop a bigdata processing procedure to analyse the monitoring data for the system of sensors. The procedure makes the land subsidence monitoring more efficient and intelligent.


Sign in / Sign up

Export Citation Format

Share Document