scholarly journals Rapid Land Subsidence in Tianjin, China Derived from Continuous GPS Observations (2010–2019)

Author(s):  
Ruibin Zhao ◽  
Guoquan Wang ◽  
Xiao Yu ◽  
Xiaohan Sun ◽  
Yan Bao ◽  
...  

Abstract. We have delineated ten years of urban subsidence derived from continuous GPS stations operated by the Crustal Movement Observational Network of China (CMONOC) within and adjacent to the municipality of Tianjin. A method for obtaining accurate site velocities with respect to a stable regional reference frame is described. CMONOC stations in Jizhou (JIXN) and Baodi (TJBD) districts recorded minor subsidence of approximately 1 to 2 mm yr−1 during the period from 2010 to 2019. One station in Wuqing (TJWQ) district and one station in Binhai (TJBH) district recorded steady subsidence of approximately 5 and 2 cm yr−1 from 2010 to 2019, respectively. One station in Cangzhou (HECX) of Hebei Province, adjacent to Tianjin, recorded steady subsidence of approximately 2.4 cm yr−1 during 2010–2014 and more rapid subsidence of 4 cm yr−1 since 2015. TJWQ recorded the most rapid land subsidence and the most significant seasonal ground oscillations (uplift and subsidence) among these five stations. This study indicates that subsidence rates in Tianjin vary significantly in space and time. Particular attention should be paid, therefore, to extrapolate or infer a rate of subsidence for an area on the basis of a subsidence rate obtained from previous GPS observations or proximal GPS sites. The subsidence time series presented in this study provide reliable “ground truth” and constraints for calibrating or validating subsidence estimations from numerical modeling and repeated surveys using other remote sensing techniques, such as Interferometric Synthetic Aperture Radar (InSAR).

2021 ◽  
Author(s):  
Ninad Bhagwat ◽  
Xiaobing Zhou ◽  
Jiaqing Miao

<p>Monitoring the regions that are prone to natural hazards is essential in disaster management, since early warnings can be issued. Airborne and space-borne remote sensing techniques are cost-effective in accomplishing the task. Estimating the area and volume of erupted lava can help researchers understand the volcanic processes and impact on land use and land cover. In this study, we developed a new algorithm to estimate areal coverage and volume of exposed hot lava by integrating the space-borne Interferometric Synthetic Aperture Radar (InSAR), thermal infrared, and Normalized Vegetation Distribution Index (NDVI) techniques. We applied this algorithm to the eruption of the East Rift Zone (ERZ) of the Kilauea volcano took place between May and August 2018 and estimated the areal coverage and volume of lava erupted. We compared the results of InSAR to those derived from airborne Light Detection and Ranging (LiDAR), and found that although air-borne LiDAR provides data with higher resolution and accuracy, InSAR is almost as good as LiDAR in monitoring deformed areas and has larger spatial and temporal coverage.</p>


2020 ◽  
Vol 12 (8) ◽  
pp. 1351 ◽  
Author(s):  
Lorenzo Solari ◽  
Matteo Del Soldato ◽  
Federico Raspini ◽  
Anna Barra ◽  
Silvia Bianchini ◽  
...  

Landslides recurrently impact the Italian territory, producing huge economic losses and casualties. Because of this, there is a large demand for monitoring tools to support landslide management strategies. Among the variety of remote sensing techniques, Interferometric Synthetic Aperture Radar (InSAR) has become one of the most widely applied for landslide studies. This work reviews a variety of InSAR-related applications for landslide studies in Italy. More than 250 papers were analyzed in this review. The first application dates back to 1999. The average production of InSAR-related papers for landslide studies is around 12 per year, with a peak of 37 papers in 2015. Almost 70% of the papers are written by authors in academia. InSAR is used (i) for landslide back analysis (3% of the papers); (ii) for landslide characterization (40% of the papers); (iii) as input for landslide models (7% of the papers); (iv) to update landslide inventories (15% of the papers); (v) for landslide mapping (32% of the papers), and (vi) for monitoring (3% of the papers). Sixty-eight percent of the authors validated the satellite results with ground information or other remote sensing data. Although well-known limitations exist, this bibliographic overview confirms that InSAR is a consolidated tool for many landslide-related applications.


Author(s):  
Liping Zheng ◽  
Lin Zhu ◽  
Wei Wang ◽  
Lin Guo ◽  
Beibei Chen

Geological disasters, including ground deformation, fractures and collapse, are serious problems in coal mining regions, which have threatened the sustainable development for local industry. The Ordos Basin is most known for its abundant coal resources. Over-mining the underground coal resources had induced land deformation. Detecting the evolution of the land deformation features and identifying the potential risk are important for decision-makers to prevent geological disasters. We analyzed land subsidence induced by coal mining in a 200 km 2 area in the Ordos Basin for the time period 2006–2015. ALOS-1 PALSAR images from December 2006 to January 2011 and ALOS-2 PALSAR-2 images from December 2014 to July 2015, optical remotely sensed images and coal mining information were collected. The small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) method and differential interferometric synthetic aperture radar (D-InSAR) method, GIS and statistical analysis were adopted. Results show that the maximum subsidence rate and cumulative subsidence along the line of sight (LOS) were −65 mm/year and −246 mm, respectively, from December 2006 to January 2011. The maximum cumulative subsidence was −226 mm from December 2014 to July 2015. The new boundary of the mining goafs from 2014 to 2015 and the most dangerous risk region were mapped. Moreover, the effect of large-scale mining coal, with the production volume exceeds 1.2 million tons per year, with the operation time more than 20 years on land subsidence was found greater than small and medium-scale coal mines and reached −59 mm/year. The recently established small-sized and medium-sized coal mines show high land subsidence. This study will contribute to better understand the land subsidence process in mining region and provide scientific support for government to prevent land subsidence.


Nature ◽  
1990 ◽  
Vol 345 (6278) ◽  
pp. 793-795 ◽  
Author(s):  
M. Marom ◽  
R. M. Goldstein ◽  
E. B. Thornton ◽  
L. Shemer

Sign in / Sign up

Export Citation Format

Share Document