scholarly journals Characterization of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany)

Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35-58
Author(s):  
Martin Balcewicz ◽  
Benedikt Ahrens ◽  
Kevin Lippert ◽  
Erik H. Saenger

Abstract. The importance of research into clean and renewable energy solutions has increased over the last decade. Geothermal energy provision is proven to meet both conditions. Therefore, conceptual models for deep geothermal applications were developed for different field sites regarding different local conditions. In Bavaria, Germany, geothermal applications were successfully carried out in carbonate horizons at depths of 4000 to 6000 m. Matrix permeability and thermal conductivity was mainly studied in karstified carbonates from the Late Jurassic reef facies. Similar to Bavaria, carbonates are located in the east of the Rhenohercynian Massif, in North Rhine-Westphalia (NRW), for which quantification of the geothermal potential is still lacking. Compared to Bavaria, a supraregional carbonate mountain belt is exposed at the Remscheid-Altena anticline (in NRW) from the Upper Devonian and Lower Carboniferous times. The aim of our study was to examine the potential geothermal reservoir by field and laboratory investigations. Therefore, three representative outcrops in Wuppertal, Hagen-Hohenlimburg, and Hönnetal were studied. During field surveys, 1068 discontinuities (139 open fractures without any filling, 213 joints, 413 veins filled with calcite, and 303 fractures filled with debris deposits) at various spatial scales were observed by scanline surveys. These discontinuities were characterized by trace length, true spacing, roughness, aperture, and filling materials. Discontinuity orientation analysis indicated three dominant strike orientations in NNW–SSE, NW–SE, and NE–SW directions within the target horizon of interest. This compacted limestone layer (Massenkalk) is approximately 150 m thick and located at 4000 to 6000 m depth, dipping northwards at a dip angle of about 30 to 40∘. An extrapolation of the measured layer orientation and dip suggests that the carbonate reservoir could hypothetically extend below Essen, Bochum, and Dortmund. Our combined analysis of the field and laboratory results has shown that it could be a naturally fractured carbonate reservoir. We evaluated the potential discontinuity network in the reservoir and its orientation with respect to the prevailing maximum horizontal stress before concluding with implications for fluid flow: we proposed focusing on prominent discontinuities striking NNW–SSE for upcoming geothermal applications, as these (1) are the most common, (2) strike in the direction of the main horizontal stress, (3) have a discontinuity permeability that significantly exceeds that of the reservoir rock matrix, and (4) only about 38 % of these discontinuities were observed with a calcite filling. The remaining discontinuities either showed no filling material or showed debris deposits, which we interpret as open at reservoir depth. Our results indicate that even higher permeability can be expected for karstified formations related to the reef facies and hydrothermal processes. Our compiled data set, consisting of laboratory and field measurements, may provide a good basis for 3D subsurface modelling and numerical prediction of fluid flow in the naturally fractured carbonate reservoir.

2020 ◽  
Author(s):  
Martin Balcewicz ◽  
Benedikt Ahrens ◽  
Kevin Lippert ◽  
Erik H. Saenger

Abstract. The importance of research into clean and renewable energy solutions has increased over the last decade. Geothermal energy provision is proven to meet both conditions. Therefore, conceptual models for deep geothermal applications were developed for different field sites regarding different local conditions. In Bavaria, Germany, geothermal applications were successfully carried out in carbonate horizons at depth of 4000 to 6000 m. High permeability rates combined with sufficient thermal conductivities were mainly studied in karstified carbonates from the Late Jurassic reef facies. Similar to Bavaria, carbonates are located in the east of the Rhenohercynian Massif, in North Rhine-Westphalia (NRW), which quantification of the geothermal potential is still lacking. Compared to Bavaria, a supraregional carbonate mountain belt is exposed at the Remscheid-Altena anitcline (NRW) from late Devonian and early Carboniferous times. The aim of our study was to examine the potential geothermal reservoir by field and laboratory investigations. Therefore, three representative outcrops in Wuppertal, Hagen Hohenlimburg, and Hönnetal were studied. During field surveys, 1068 discontinuities at various spacial scales were observed by scanline surveys. These discontinuities were characterized by trace length, true spacing, roughness, aperture, and filling materials. Joint orientation analysis indicated three dominant strike orientations in NNW–SSE, NW–SE, and NE–SW directions within the target horizon of interest. This compacted limestone layer (Massenkalk) is approximately 300 m thick and located at 4000 to 6000 m depth, dipping northwards at a shallow dip angle of about 30 to 40°. An extrapolation of the measured layer orientation and dip suggests that the carbonate reservoir extends below Essen, Bochum, and Dortmund. Our combined analysis of the field and laboratory results has shown that it could be a naturally fractured carbonate reservoir. We evaluated the potential fracture network in the reservoir and its orientation with respect to the prevailing maximum horizontal stress before concluding with implications for fluid flow: We proposed to focus on discontinuities that are approximately N–S oriented for upcoming geothermal applications, because the geothermal potential of the characterized reservoir matrix is insufficient for deep geothermal applications. Our results indicate that even higher permeability can be expected for karstified formations related to the reef facies. Our compiled data set consisting of laboratory and field measurements may provide a good basis for 3D subsurface modeling and numerical prediction of fluid flow in the naturally fractured carbonate reservoir. Further studies have to be elaborated to verify, if the fractured reservoir could possibly be reactivated by, for instance, hydraulic stimulation and thus enable geothermal applications.


2021 ◽  
Vol 73 (01) ◽  
pp. 20-22
Author(s):  
Trent Jacobs

In the midst of an industry downturn last year, the Abu Dhabi National Oil Company (ADNOC) reached a new oil production ceiling of 4 million B/D. The UAE’s largest producer has no intentions of slowing down. By decade’s end, ADNOC expects to have raised its maximum daily output by another million barrels. To cross that milestone, the company has set its sights on mastering the tight, thin, and unconventional formations that dot the UAE’s subsurface landscape. One of the places where such developments are hoped to unfold soon is known as Field Q. Found in southeastern Abu Dhabi, Field Q sits above a tight carbonate reservoir that holds an estimated 600 million bbl of oil. But with a permeability ranging from 1 to 3 millidarcy and poor vertical communication, the reservoir and its barrels have proven difficult to cultivate economically - until recently. ADNOC has published new details of its first onshore pilot of a “fishbone stimulation” that involved using more than a hundred hollow needles to pierce as far as 40 ft into the reservoir rock. The additional drainage netted by the fishbone needles boosted production threefold in the test well, as compared with its traditionally completed neighbors on the same pad. ADNOC ran the pilot in the summer of 2019 and by the end of the year saw enough production data to launch a wider 10-well pilot that remains underway. Based on a longer-term data set from these wells, the company will decide whether to leap into a fieldwide deployment of the niche completions technology. In the meantime, the petrotechnical team in charge of the test projects have issued roundly positive reviews of the fishbone technique in two recently presented technical papers (SPE 202636; SPE 203086) from the Abu Dhabi International Petroleum Exhibition & Conference (ADIPEC). “There is a chance that the fishbone-stimulated wells can avoid the drilling of multiple wells targeting different sublayers in the same zone,” said Rama Rao Rachapudi, listing one of several of the technology’s advantages over other approaches that were considered. The senior petroleum engineer with ADNOC, who is one of several authors of the papers that cover both the drilling and completions aspects of the pilot, shared during ADIPEC that his onshore team found motivation to test the technology after bringing in a batch of dis-mal appraisal wells. The fishbone system, also known as multilateral jetting stimulation technology, has been a specialized application ever since it was introduced just over a decade ago. Underscoring the potential impact of the current round of pilots on the technology’s adoption rate, ADNOC noted there were only around 30 worldwide fishbone deployments prior to this project. Most of those have been in the Middle East’s naturally fractured and layered carbonate formations - just like those of Field Q.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1172-1180 ◽  
Author(s):  
W. Scott Leaney ◽  
Colin M. Sayers ◽  
Douglas E. Miller

Multioffset vertical seismic profile (VSP) experiments, commonly referred to as walkaways, enable anisotropy to be measured reliably in the field. The results can be fed into modeling programs to study the impact of anisotropy on velocity analysis, migration, and amplitude versus offset (AVO). Properly designed multioffset VSPs can also provide the target AVO response measured under optimum conditions, since the wavelet is recorded just above the reflectors of interest with minimal reflection point dispersal. In this paper, the multioffset VSP technique is extended to include multioffset azimuths, and a multiazimuthal multiple VSP data set acquired over a carbonate reservoir is analyzed for P-wave anisotropy and AVO. Direct arrival times down to the overlying shale and reflection times and amplitudes from the carbonate are analyzed. Data analysis involves a three‐term fit to account for nonhyperbolic moveout, dip, and azimuthal anisotropy. Results indicate that the overlying shale is transversely isotropic with a vertical axis of symmetry (VTI), while the carbonate shows 4–5% azimuthal anisotropy in traveltimes. The fast direction is consistent with the maximum horizontal stress orientation determined from break‐out logs and is also consistent with the strike of major faults. AVO analysis of the reflection from the top of the carbonate layer shows a critical angle reduction in the fast direction and maximum gradient in the slow direction. This agrees with modeling and indicates a greater amplitude sensitivity in the slow direction—the direction perpendicular to fracture strike. In principle, 3-D surveys should have wide azimuthal coverage to characterize fractured reservoirs. If this is not possible, it is important to have azimuthal line coverage in the minimum horizontal stress direction to optimize the use of AVO for fractured reservoir characterization. This direction can be obtained from multiazimuthal walkaways using the azimuthal P-wave analysis techniques presented.


Sign in / Sign up

Export Citation Format

Share Document