scholarly journals Study on the limitations of traveltime inversion in the presence of extreme velocity anomalies

2013 ◽  
Vol 5 (1) ◽  
pp. 189-226
Author(s):  
I. Flecha ◽  
R. Carbonell ◽  
R. W. Hobbs

Abstract. The difficulties of seismic imaging beneath high velocity structures are widely recognised. In this setting, theoretical analysis of synthetic wide-angle seismic reflection data indicates that velocity models are not well constrained. A two-dimensional velocity model was built to simulate a simplified structural geometry given by a basaltic wedge placed within a sedimentary sequence. This model reproduces the geological setting in areas of special interest for the oil industry as the Faroe-Shetland Basin. A wide-angle synthetic dataset was calculated on this model using an elastic finite difference scheme. This dataset provided travel times for tomographic inversions. Results show that the original model can not be completely resolved without considering additional information. The resolution of nonlinear inversions lacks a functional mathematical relationship, therefore, statistical approaches are required. Stochastical tests based on Metropolis techniques support the need of additional information to properly resolve subbasalt structures.

Solid Earth ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 543-554 ◽  
Author(s):  
I. Flecha ◽  
R. Carbonell ◽  
R. W. Hobbs

Abstract. The difficulties of seismic imaging beneath high velocity structures are widely recognised. In this setting, theoretical analysis of synthetic wide-angle seismic reflection data indicates that velocity models are not well constrained. A two-dimensional velocity model was built to simulate a simplified structural geometry given by a basaltic wedge placed within a sedimentary sequence. This model reproduces the geological setting in areas of special interest for the oil industry as the Faroe-Shetland Basin. A wide-angle synthetic dataset was calculated on this model using an elastic finite difference scheme. This dataset provided travel times for tomographic inversions. Results show that the original model can not be completely resolved without considering additional information. The resolution of nonlinear inversions lacks a functional mathematical relationship, therefore, statistical approaches are required. Stochastic tests based on Metropolis techniques support the need of additional information to properly resolve sub-basalt structures.


Geophysics ◽  
1998 ◽  
Vol 63 (3) ◽  
pp. 1062-1065 ◽  
Author(s):  
Thomas Gruber ◽  
Stewart A. Greenhalgh

Rectangular grid velocity models and their derivatives are widely used in geophysical inversion techniques. Specifically, seismic tomographic reconstruction techniques, whether they be based on raypath methods (Bregman et al., 1989; Moser, 1991; Schneider et al., 1992; Cao and Greenhalgh, 1993; Zhou, 1993) or full wave equation methods (Vidale, 1990; Qin and Schuster, 1993; Cao and Greenhalgh, 1994) for calculating synthetic arrival times, involve propagation through a grid model. Likewise, migration of seismic reflection data, using asymptotic ray theory or finite difference/pseudospectral methods (Stolt and Benson, 1986; Zhe and Greenhalgh, 1997) involve assigning traveltimes to upward and downward propagating waves at every grid point in the model. The traveltimes in both cases depend on the grid specification. However, the precision level of such numerical models and their dependence on the model parameters is often unknown. In this paper, we describe a two‐dimensional velocity model and derive an error bound for first‐break times calculated with such a model. The analysis provides clear guidelines for grid specifications.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1339-1347 ◽  
Author(s):  
Kate C. Miller ◽  
Steven H. Harder ◽  
Donald C. Adams ◽  
Terry O’Donnell

Shallow seismic reflection surveys commonly suffer from poor data quality in the upper 100 to 150 ms of the stacked seismic record because of shot‐associated noise, surface waves, and direct arrivals that obscure the reflected energy. Nevertheless, insight into lateral changes in shallow structure and stratigraphy can still be obtained from these data by using first‐arrival picks in a refraction analysis to derive a near‐surface velocity model. We have used turning‐ray tomography to model near‐surface velocities from seismic reflection profiles recorded in the Hueco Bolson of West Texas and southern New Mexico. The results of this analysis are interval‐velocity models for the upper 150 to 300 m of the seismic profiles which delineate geologic features that were not interpretable from the stacked records alone. In addition, the interval‐velocity models lead to improved time‐to‐depth conversion; when converted to stacking velocities, they may provide a better estimate of stacking velocities at early traveltimes than other methods.


2000 ◽  
Vol 37 (2-3) ◽  
pp. 439-458 ◽  
Author(s):  
R F Mereu

The major features of the individual velocity models, Poisson's ratio values, and crustal complexity derived from the interpretation of seismic data sets from four long-range seismic refraction - wide-angle reflection experiments are summarized. The experiments were conducted from 1982-92 in the southeastern portion of the Canadian Shield. In the conventional analysis of seismic refraction - wide-angle reflection data, only the onset times and amplitudes of the major arrival phases are used to derive seismic velocity models of the region under study. These models are over smoothed, have a number of intermediate discontinuities, are unable to explain the Pg coda, and bear very little resemblance to the models derived from the analysis of near-vertical seismic reflection data. In this paper some of the differences between seismic models derived from near-vertical reflection analysis and those from refraction analysis are reconciled from an analysis of the wide-angle reflection fields of the crustal coda waves that follow the first arrivals. This was done using a migration technique that to a first approximation maps the amplitudes of the record sections into a two-dimensional (2-D) complexity section. These new sections show significant lateral variations in crustal and Moho reflectivity and may be used to complement the 2-D velocity anomaly sections and near-vertical reflection sections. The method was based on a numerical study that showed that the coda can be explained with a class of complex heterogeneous models in which sets of small-scale, high-contrast sloping seismic reflectors are "embedded" in a uniform seismic velocity gradient field.


2021 ◽  
Vol 225 (2) ◽  
pp. 1020-1031
Author(s):  
Huachen Yang ◽  
Jianzhong Zhang ◽  
Kai Ren ◽  
Changbo Wang

SUMMARY A non-iterative first-arrival traveltime inversion method (NFTI) is proposed for building smooth velocity models using seismic diving waves observed on irregular surface. The new ray and traveltime equations of diving waves propagating in smooth media with undulant observation surface are deduced. According to the proposed ray and traveltime equations, an analytical formula for determining the location of the diving-wave turning points is then derived. Taking the influence of rough topography on first-arrival traveltimes into account, the new equations for calculating the velocities at turning points are established. Based on these equations, a method is proposed to construct subsurface velocity models from the observation surface downward to the bottom using the first-arrival traveltimes in common offset gathers. Tests on smooth velocity models with rugged topography verify the validity of the established equations, and the superiority of the proposed NFTI. The limitation of the proposed method is shown by an abruptly-varying velocity model example. Finally, the NFTI is applied to solve the static correction problem of the field seismic data acquired in a mountain area in the western China. The results confirm the effectivity of the proposed NFTI.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Hervé Chauris ◽  
Mark S. Noble ◽  
Gilles Lambaré ◽  
Pascal Podvin

We present a new method based on migration velocity analysis (MVA) to estimate 2‐D velocity models from seismic reflection data with no assumption on reflector geometry or the background velocity field. Classical approaches using picking on common image gathers (CIGs) must consider continuous events over the whole panel. This interpretive step may be difficult—particularly for applications on real data sets. We propose to overcome the limiting factor by considering locally coherent events. A locally coherent event can be defined whenever the imaged reflectivity locally shows lateral coherency at some location in the image cube. In the prestack depth‐migrated volume obtained for an a priori velocity model, locally coherent events are picked automatically, without interpretation, and are characterized by their positions and slopes (tangent to the event). Even a single locally coherent event has information on the unknown velocity model, carried by the value of the slope measured in the CIG. The velocity is estimated by minimizing these slopes. We first introduce the cost function and explain its physical meaning. The theoretical developments lead to two equivalent expressions of the cost function: one formulated in the depth‐migrated domain on locally coherent events in CIGs and the other in the time domain. We thus establish direct links between different methods devoted to velocity estimation: migration velocity analysis using locally coherent events and slope tomography. We finally explain how to compute the gradient of the cost function using paraxial ray tracing to update the velocity model. Our method provides smooth, inverted velocity models consistent with Kirchhoff‐type migration schemes and requires neither the introduction of interfaces nor the interpretation of continuous events. As for most automatic velocity analysis methods, careful preprocessing must be applied to remove coherent noise such as multiples.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 577-590 ◽  
Author(s):  
Side Jin ◽  
Raul Madariaga

Seismic reflection data contain information on small‐scale impedance variations and a smooth reference velocity model. Given a reference velocity model, the reflectors can be obtained by linearized migration‐inversion. If the reference velocity is incorrect, the reflectors obtained by inverting different subsets of the data will be incoherent. We propose to use the coherency of these images to invert for the background velocity distribution. We have developed a two‐step iterative inversion method in which we separate the retrieval of small‐scale variations of the seismic velocity from the longer‐period reference velocity model. Given an initial background velocity model, we use a waveform misfit‐functional for the inversion of small‐scale velocity variations. For this linear step we use the linearized migration‐inversion method based on ray theory that we have recently developed with Lambaré and Virieux. The reference velocity model is then updated by a Monte Carlo inversion method. For the nonlinear inversion of the velocity background, we introduce an objective functional that measures the coherency of the short wavelength components obtained by inverting different common shot gathers at the same locations. The nonlinear functional is calculated directly in migrated data space to avoid expensive numerical forward modeling by finite differences or ray theory. Our method is somewhat similar to an iterative migration velocity analysis, but we do an automatic search for relatively large‐scale 1-D reference velocity models. We apply the nonlinear inversion method to a marine data set from the North Sea and also show that nonlinear inversion can be applied to realistic scale data sets to obtain a laterally heterogeneous velocity model with a reasonable amount of computer time.


2005 ◽  
Vol 42 (6) ◽  
pp. 1277-1293 ◽  
Author(s):  
Ron M Clowes ◽  
Philip TC Hammer ◽  
Gabriela Fernández-Viejo ◽  
J Kim Welford

The SNORCLE refraction – wide-angle reflection (R/WAR) experiment, SNORE'97, included four individual lines along the three transect corridors. A combination of SNORE'97 results with those from earlier studies permits generation of a 2000 km long lithospheric velocity model that extends from the Archean Slave craton to the present Pacific basin. Using this model and coincident near-vertical incidence (NVI) reflection data and geological information, an interpreted cross section that exemplifies 4 Ga of lithospheric development is generated. The velocity structural models correlate well with the reflection sections and provide additional structural, compositional, and thermal constraints. Geological structures and some faults are defined in the upper crust. At a larger scale, the seismic data identify a variety of orogenic styles ranging from thin- to thick-skinned accretion in the Cordillera and crustal-scale tectonic wedging associated with both Paleoproterozoic and Mesozoic collisions. Models of Poisson's ratio support the NVI interpretation that a thick wedge of cratonic metasediments underlies the eastern accreted Cordilleran terranes. Despite the variety of ages, orogenic styles, and tectono-magmatic deformations that are spanned by the seismic corridors, the Moho remains remarkably flat and shallow (33–36 km) across the majority of the transect. Significant variations only occur at major tectonic boundaries. Laterally variable crustal velocities are consistently slower beneath the Cordillera than beneath the cratonic crust. This is consistent with the high temperatures (800–900 °C) required by the slow upper mantle velocities (7.8–7.9 km/s) observed beneath much of the Cordillera. Heterogeneity of the lithospheric mantle is indicated by wide-angle reflections below the Precambrian domains and the western Cordillera.


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 341-353 ◽  
Author(s):  
Xiao‐Gui Miao ◽  
Wooil M. Moon ◽  
B. Milkereit

A multioffset, three‐component vertical seismic profiling (VSP) experiment was carried out in the Sudbury Basin, Ontario, as a part of the LITHOPROBE Sudbury Transect. The main objectives were determination of the shallow velocity structure in the middle of the Sudbury Basin, development of an effective VSP data processing flow, correlation of the VSP survey results with the surface seismic reflection data, and demonstration of the usefulness of the VSP method in a crystalline rock environment. The VSP data processing steps included rotation of the horizontal component data, traveltime inversion for velocity analysis, Radon transform for wavefield separation, and preliminary analysis of shear‐wave data. After wavefield separation, the flattened upgoing wavefields for both P‐waves and S‐waves display consistent reflection events from three depth levels. The VSP-CDP transformed section and corridor stacked section correlate well with the high‐resolution surface reflection data. In addition to obtaining realistic velocity models for both P‐ and S‐waves through least‐square inversion and synthetic seismic modeling for the Chelmsford area, the VSP experiment provided an independent estimation for the reflector dip using three component hodogram analysis, which indicates that the dip of the contact between the Chelmsford and Onwatin formations, at an approximate depth of 380 m in the Chelmsford borehole, is approximately 10.5° southeast. This study demonstrates that multioffset, three‐component VSP experiments can provide important constraints and auxiliary information for shallow crustal seismic studies in crystalline terrain. Thus, the VSP technique bridges the gap between the surface seismic‐reflection technique and well‐log surveys.


Sign in / Sign up

Export Citation Format

Share Document