scholarly journals Record of Early Toarcian carbon cycle perturbations in a nearshore environment: the Bascharage section (easternmost Paris Basin)

2014 ◽  
Vol 6 (1) ◽  
pp. 1073-1100 ◽  
Author(s):  
M. Hermoso ◽  
D. Delsate ◽  
F. Baudin ◽  
L. Le Callonnec ◽  
F. Minoletti ◽  
...  

Abstract. In order to understand the significance of worldwide deposition of black shale facies in the Early Toarcian (~ 183 Ma), considerable attention has been drawn to this Early Jurassic sub-Stage over the last three decades. The discovery of a pronounced negative carbon isotope excursion (CIE) within the black shales disrupting the generally positive trend in carbon isotopes has stimulated many studies, particularly with a view to establish the local vs. global nature of this major geochemical phenomenon. Here we document the sedimentological and chemostratigraphic evolution of a proximal environment in the Luxembourgian sedimentary area, the so-called Gutland. At Bascharage, Lower Toarcian sediments record the isotopic signature of the Early Toarcian Oceanic Anoxic Event (OAE) by a pronounced positive trend that testifies for widespread anoxia. The expression of the carbon isotope perturbation in this section however, is unusual compared to adjacent NW European sections. A first −7 ‰ negative CIE, whose onset is recorded at the top of the tenuicostatum zone, can be assigned to the well-documented and potentially global T-CIE with confidence using the well-constrained ammonite biostratigraphic framework for this section. In this interval, facies contain only a limited amount of carbonate as a result of intense detrital supply in such a proximal and shallow environment. Stratigraphically higher in the section, the serpentinum zone records a subsequent CIE (−6 ‰) that is expressed by four negative steps, each being accompanied by positive shifts in the oxygen isotopic composition of carbonate. The preservation state of coccoliths and calcareous dinoflagellates in the second CIE is excellent and comparable to that observed in under- and overlying strata, so this cannot be an artefact of diagenesis. Considering the nature of this record, and the lack of such a pronounced event in the serpentinum zone in coeval sections in Europe, we hypothesise that this second CIE was caused by local factors. The geochemical record of carbonate with a relatively light carbon and relatively heavy oxygen isotopic composition is compatible with the so-called Küspert model, by which a CIE can be explained by an influx of 12C-rich and cold waters due to upwelling bottom water masses. With the ongoing effort of high-resolution studies of the Meso-Cenozoic eras, further CIEs are likely to be found, but it has to be remembered that their (global) significance can only be determined via an integrated sedimentological, mineralogical, micropalaeontological and geochemical approach.

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 793-804 ◽  
Author(s):  
M. Hermoso ◽  
D. Delsate ◽  
F. Baudin ◽  
L. Le Callonnec ◽  
F. Minoletti ◽  
...  

Abstract. In order to understand the significance of the worldwide deposition of black shale facies in the Early Toarcian (~ 183 Ma), considerable attention has been drawn to this Early Jurassic sub-stage over the last 3 decades. The discovery of a pronounced negative carbon isotope excursion (CIE) within the black shales disrupting the generally positive trend in carbon isotopes has stimulated many studies, particularly with a view to establish the local versus global nature of this major geochemical phenomenon. Here we document the sedimentological and chemostratigraphic evolution of a proximal environment in the Luxembourgian sedimentary area. At Bascharage, Lower Toarcian sediments record the isotopic signature of the Early Toarcian oceanic anoxic event (OAE) by a pronounced positive trend that testifies for widespread anoxia. The expression of the carbon isotope perturbation in this section, however, is unusual compared to adjacent NW European sections. A first −7‰ negative CIE, whose onset is recorded at the top of the tenuicostatum zone, can be assigned to the well-documented and potentially global Toarcian carbon isotope excursion (T-CIE) with confidence using the well-constrained ammonite biostratigraphic framework for this section. In this interval, facies contain only a limited amount of carbonate as a result of intense detrital supply in such a proximal and shallow environment. Stratigraphically higher in the section, the serpentinum zone records a subsequent CIE (−6‰) expressed as four negative steps, each being accompanied by positive shifts in the oxygen isotopic composition of carbonate. The preservation state of coccoliths and calcareous dinoflagellates in the second CIE is excellent and comparable to that observed in under- and overlying strata, so this cannot be an artefact of diagenesis. Considering the nature of this record, and the lack of such a pronounced event in the serpentinum zone in coeval sections in Europe, we hypothesise that this second CIE was caused by local factors. The geochemical record of carbonate with a relatively light carbon and relatively heavy oxygen isotopic composition is compatible with the so-called Küspert model, by which a CIE can be explained by an influx of 12C-rich and cold waters due to upwelling bottom water masses.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Paolo Madonia ◽  
Marianna Cangemi ◽  
Rocco Favara

Oxygen isotopic composition is useful for individuating recharge areas of groundwater bodies by the comparison with those of local rainfalls. While on a global scale general relationships, such as the isotopic vertical gradient or continentality effects, efficiently describe spatial variations of the isotopic signature, hydrogeological applications need spatial models that are more focused on the effects of local topographic structures and/or subsoil geology. This work presents a case study in northeastern Sicily (Italy) characterized by complex geological and orographic structures, in which isotopic composition of rainfalls is governed by orographic effects and the varying initial composition of humid air masses. We used a black box approach, comparing the average isotopic composition of rain collected from a network of eight samplers with their spatial descriptors (elevation, latitude and longitude). We obtained the best correlation with the simultaneous use of all these variables, applying their multiple linear correlation equation to transform the 1 × 1 km digital elevation model (DEM) of the study area into a digital isotopic model (DIM). The reliability of the DIM was confirmed by its good agreement with the oxygen isotopic composition contour map of the local groundwater.


1998 ◽  
Vol 29 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Peter Raben ◽  
Wilfred H. Theakstone

Marked vertical variations of ions and oxygen isotopes were present in the snowpack at the glacier Austre Okstindbreen during the pre-melting phase in 1995 at sites between 825 m and 1,470 m above sea level. As the first meltwater percolated from the top of the pack, ions were moved to a greater depth, but the isotopic composition remained relatively unchanged. Ions continued to move downwards through the pack during the melting phase, even when there was little surface melting and no addition of liquid precipitation. The at-a-depth correlation between ionic concentrations and isotopic ratios, strong in the pre-melting phase, weakened during melting. In August, concentrations of Na+ and Mg2+ ions in the residual pack were low and vertical variations were slight; 18O enrichment had occurred. The difference of the time at which melting of the snowpack starts at different altitudes influences the input of ions and isotopes to the underlying glacier.


2021 ◽  
Author(s):  
Bruk Lemma ◽  
Lucas Bittner ◽  
Bruno Glaser ◽  
Seifu Kebede ◽  
Sileshi Nemomissa ◽  
...  

AbstractThe hydrogen isotopic composition of leaf wax–derived n-alkane (δ2Hn-alkane) and oxygen isotopic composition of hemicellulose–derived sugar (δ18Osugar) biomarkers are valuable proxies for paleoclimate reconstructions. Here, we present a calibration study along the Bale Mountains in Ethiopia to evaluate how accurately and precisely the isotopic composition of precipitation is imprinted in these biomarkers. n-Alkanes and sugars were extracted from the leaf and topsoil samples and compound–specific δ2Hn-alkane and δ18Osugar values were measured using a gas chromatograph–thermal conversion–isotope ratio mass spectrometer (GC–TC–IRMS). The weighted mean δ2Hn-alkane and δ18Osugar values range from − 186 to − 89‰ and from + 27 to + 46‰, respectively. Degradation and root inputs did not appear to alter the isotopic composition of the biomarkers in the soil samples analyzed. Yet, the δ2Hn-alkane values show a statistically significant species dependence and δ18Osugar yielded the same species–dependent trends. The reconstructed leaf water of Erica arborea and Erica trimera is 2H– and 18O–enriched by + 55 ± 5 and + 9 ± 1‰, respectively, compared to precipitation. By contrast, Festuca abyssinica reveals the most negative δ2Hn-alkane and least positive δ18Osugar values. This can be attributed to “signal–dampening” caused by basal grass leaf growth. The intermediate values for Alchemilla haumannii and Helichrysum splendidum can be likely explained with plant physiological differences or microclimatic conditions affecting relative humidity (RH) and thus RH–dependent leaf water isotope enrichment. While the actual RH values range from 69 to 82% (x̄ = 80 ± 3.4%), the reconstructed RH values based on a recently suggested coupled δ2Hn-alkane –δ18Osugar (paleo–) hygrometer approach yielded a mean of 78 ± 21%. Our findings corroborate (i) that vegetation changes, particularly in terms of grass versus non–grassy vegetation, need to be considered in paleoclimate studies based on δ2Hn-alkane and δ18Osugar records and (ii) that the coupled δ2Hn-alkane –δ18Osugar (paleo–) hygrometer approach holds great potential for deriving additional paleoclimatic information compared to single isotope approaches.


2015 ◽  
Vol 68 ◽  
pp. 164-170 ◽  
Author(s):  
S.V. Vysotskiy ◽  
V.P. Nechaev ◽  
A.Yu. Kissin ◽  
V.V. Yakovenko ◽  
A.V. Ignat'ev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document