scholarly journals Application of a laser-based spectrometer for continuous in situ measurements of stable isotopes of soil CO<sub>2</sub> in calcareous and acidic soils

SOIL ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 49-62 ◽  
Author(s):  
Jobin Joseph ◽  
Christoph Külls ◽  
Matthias Arend ◽  
Marcus Schaub ◽  
Frank Hagedorn ◽  
...  

Abstract. The short-term dynamics of carbon and water fluxes across the soil–plant–atmosphere continuum are still not fully understood. One important constraint is the lack of methodologies that enable simultaneous measurements of soil CO2 concentration and respective isotopic composition at a high temporal resolution for longer periods of time. δ13C of soil CO2 can be used to derive information on the origin and physiological history of carbon, and δ18O in soil CO2 aids in inferring the interaction between CO2 and soil water. We established a real-time method for measuring soil CO2 concentration, δ13C and δ18O values across a soil profile at higher temporal resolutions (0.05–0.1 Hz) using an off-axis integrated cavity output spectroscopy (OA-ICOS). We also developed a calibration method correcting for the sensitivity of the device against concentration-dependent shifts in δ13C and δ18O values under highly varying CO2 concentration. The deviations of measured data were modelled, and a mathematical correction model was developed and applied for correcting the shift. By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. We found that in the calcareous Gleysol, CO2 originating from carbonate dissolution contributed to the total soil CO2 concentration at detectable degrees, potentially due to CO2 evasion from groundwater. The 13C-CO2 of topsoil at the calcareous soil site was found reflect δ13C values of atmospheric CO2, and the δ13C of topsoil CO2 at the acidic soil site was representative of the biological respiratory processes. δ18O values of CO2 in both sites reflected the δ18O of soil water across most of the depth profile, except for the 80 cm depth at the calcareous site where a relative enrichment in 18O was observed.

2018 ◽  
Author(s):  
Jobin Joseph ◽  
Christoph Külls ◽  
Matthias Arend ◽  
Marcus Schaub ◽  
Frank Hagedorn ◽  
...  

Abstract. The short-term dynamics of carbon and water fluxes across the soil–plant–atmosphere continuum are still not fully understood. One important constraint is the lack of methodologies that enable simultaneous measurements of soil CO2 concentration and its isotopic composition at a high temporal resolution for longer periods of time. δ13C of soil CO2 can be used to derive information on the origin and physiological history of carbon and δ18O in soil CO2 aids to infer interaction between CO2 and soil water. We established a real-time method for measuring soil CO2 concentration, δ13C and δ18O values across a soil profile at higher temporal resolutions up to 1 Hz using an Off-Axis Integrated Cavity Output Spectrometer (OA-ICOS). We also developed a calibration method correcting for the sensitivity of the device against concentration-dependent shifts in δ13C and δ18O values under highly varying CO2 concentration. The deviations of measured data were modelled, and a mathematical correction model was developed and applied for correcting the shift. By coupling an OA-ICOS with hydrophobic but gas permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. We found that in the calcareous Gleysol, CO2 originating from carbonate dissolution contributed to the total soil CO2 concentration at detectable degrees probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be rather pronounced in the topsoil layers at both sites. No specific pattern was identified for δ18O in soil CO2 at the calcareous site, δ18O values reflected fairly well the δ18O of soil water at the acidic soil site.


2020 ◽  
Vol 148 (3) ◽  
pp. 255-269 ◽  
Author(s):  
Kyungjin Min ◽  
Asmeret Asefaw Berhe ◽  
Chau Minh Khoi ◽  
Hella van Asperen ◽  
Jeroen Gillabel ◽  
...  

Author(s):  
Adrian Heger ◽  
Volker Kleinschmidt ◽  
Alexander Gröngröft ◽  
Lars Kutzbach ◽  
Annette Eschenbach

CATENA ◽  
2020 ◽  
Vol 185 ◽  
pp. 104280
Author(s):  
Min Cao ◽  
Yongjun Jiang ◽  
Yu Chen ◽  
Jiaxin Fan ◽  
Qiufang He

2019 ◽  
Vol 375 ◽  
pp. 43-56 ◽  
Author(s):  
M. Poret ◽  
A. Finizola ◽  
T. Ricci ◽  
G.P. Ricciardi ◽  
N. Linde ◽  
...  

1997 ◽  
Vol 20 (12) ◽  
pp. 1495-1505 ◽  
Author(s):  
T. J. BOUMA ◽  
K. L. NIELSEN ◽  
D. M. EISSENSTAT ◽  
J. P. LYNCH

2004 ◽  
Vol 1 (1) ◽  
pp. 1-9 ◽  
Author(s):  
B. Mortazavi ◽  
J. L. Prater ◽  
J. P. Chanton

Abstract. Three approaches for determining the stable isotopic composition (δ13C and δ18O) of soil CO efflux were compared. A new technique employed mini-towers, constructed of open-topped piping, that were placed on the soil surface to collect soil-emitted CO2. Samples were collected along a vertical gradient and analyzed for CO2 concentration and isotopic composition. These data were then used to produce Keeling plots to determine the δ18O and δ13C of CO2 emitted from the soil. These results were then compared to the δ18O and δ13C of soil-respired CO2 measured with two other techniques: (1) flux chambers and (2) estimation from the application of the diffusional fractionation factor to measured values of below ground soil CO2 and to CO2 in equilibrium with soil water δ18O. Mini-tower δ18O Keeling plots were linear and highly significant (0.81< r 2 > 0.96), in contrast to chamber δ18O Keeling plots, which showed significant curvature, necessitating the use of a mass balance to calculate the δ18O of respired CO2. In the chambers, the values determined for the δ18O of soil respired CO2 approached the value of CO2 in equilibrium with surficial soil water, and the results were significantly δ18O enriched relative to the mini-tower results and the δ18O of soil CO2 efflux determined from soil CO2. There were close agreements between the three methods for the determination of the δ13C of soil efflux CO2. Results suggest that the mini-towers can be effectively used in the field for determining the δ18O and the δ13C of soil-respired CO2.


2012 ◽  
Vol 63 (2) ◽  
pp. 261-271 ◽  
Author(s):  
N. Goutal ◽  
F. Parent ◽  
P. Bonnaud ◽  
J. Demaison ◽  
G. Nourrisson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document