scholarly journals Simulated dynamic regrounding during marine ice sheet retreat

2018 ◽  
Vol 12 (7) ◽  
pp. 2425-2436
Author(s):  
Lenneke M. Jong ◽  
Rupert M. Gladstone ◽  
Benjamin K. Galton-Fenzi ◽  
Matt A. King

Abstract. Marine-terminating ice sheets are of interest due to their potential instability, making them vulnerable to rapid retreat. Modelling the evolution of glaciers and ice streams in such regions is key to understanding their possible contribution to sea level rise. The friction caused by the sliding of ice over bedrock and the resultant shear stress are important factors in determining the velocity of sliding ice. Many models use simple power-law expressions for the relationship between the basal shear stress and ice velocity or introduce an effective-pressure dependence into the sliding relation in an ad hoc manner. Sliding relations based on water-filled subglacial cavities are more physically motivated, with the overburden pressure of the ice included. Here we show that using a cavitation-based sliding relation allows for the temporary regrounding of an ice shelf at a point downstream of the main grounding line of a marine ice sheet undergoing retreat across a retrograde bedrock slope. This suggests that the choice of sliding relation is especially important when modelling grounding line behaviour of regions where potential ice rises and pinning points are present and regrounding could occur.

2017 ◽  
Author(s):  
Lenneke M. Jong ◽  
Rupert M. Gladstone ◽  
Benjamin K. Galton-Fenzi ◽  
Matt A. King

Abstract. Marine terminating ice sheets are of interest due to their potential instability, making them vulnerable to rapid retreat. Modelling the evolution of glaciers and ice streams in such regions is key to understanding their possible contribution to sea level rise. The friction caused by the sliding of ice over bedrock, and the resultant shear stress, are important factors in determining the velocity of sliding ice. Many models use simple power-law expressions for the relationship between the basal shear stress and ice velocity or introduce an effective pressure dependence into the sliding relation in an ad hoc. manner. Sliding relations based on water-filled sub-glacial cavities are more physically motivated, with the overburden pressure of the ice included. Here we show that using a cavitation based sliding relation allows for the temporary regrounding of an ice shelf at a point downstream of the main grounding line of a marine ice sheet undergoing retreat across a retrograde bedrock slope. This suggests that the choice of sliding relation is especially important when modelling grounding line behaviour of regions where potential ice rises and pinning points are present and regrounding could occur.


1979 ◽  
Vol 24 (90) ◽  
pp. 493-495
Author(s):  
T. J. Hughes

AbstractSize, shape, and surface albedo of former ice sheets are needed in order to model atmospheric circulation for the CLIMAP 18000 years B.P. experiment. Both the size and shape of an ice sheet depend on the hardness of ice and its coupling to bedrock. Ice hardness is controlled by ice temperature and fabric, which are not adequately described by any ice flow law. Ice–bed coupling is controlled by bed roughness and basal melt water, which are not adequately described by any ice sliding law. With these inadequacies in mind, we assumed equilibrium ice-sheet conditions 18000 years ago and combined the standard steady-state flow and sliding laws of ice with the equation of mass balance to obtain separate basal shear-stress variations along ice-sheet flow lines for a frozen bed when the flow law dominates and for a melted bed when the sliding law dominates. Theoretical basal shear-stress variations were then derived for freezing and melting beds on the assumption that separate melted areas of the bed had water films of constant thickness which expanded and merged for a melting bed but contracted and separated for a freezing bed. Theoretical basal shear-stress variations were also derived for ice streams along marine ice-sheet margins and ice lobes along terrestrial ice-sheet margins on the assumption that the entire area of their bed was wet so that further melting increased the water-layer thickness, which would then be decreased by freezing. Melting was assumed to continue to the grounding line of an ice stream and the minimum-slope surface inflection line of an ice lobe, where freezing began and continued to the ice-lobe terminus. Ice–bed uncoupling is complete at an ice-stream grounding line and maximized at an ice-lobe minimum-slope inflection line, so ice velocity and consequent generation of frictional heat were assumed to reach maxima across these lines. Theoretical basal shear-stress variations were derived for the zone of converging flow at the heads of ice streams and ice lobes, and from domes to saddles along the ice divide for both frozen and melted beds.


1979 ◽  
Vol 24 (90) ◽  
pp. 493-495 ◽  
Author(s):  
T. J. Hughes

Abstract Size, shape, and surface albedo of former ice sheets are needed in order to model atmospheric circulation for the CLIMAP 18000 years B.P. experiment. Both the size and shape of an ice sheet depend on the hardness of ice and its coupling to bedrock. Ice hardness is controlled by ice temperature and fabric, which are not adequately described by any ice flow law. Ice–bed coupling is controlled by bed roughness and basal melt water, which are not adequately described by any ice sliding law. With these inadequacies in mind, we assumed equilibrium ice-sheet conditions 18000 years ago and combined the standard steady-state flow and sliding laws of ice with the equation of mass balance to obtain separate basal shear-stress variations along ice-sheet flow lines for a frozen bed when the flow law dominates and for a melted bed when the sliding law dominates. Theoretical basal shear-stress variations were then derived for freezing and melting beds on the assumption that separate melted areas of the bed had water films of constant thickness which expanded and merged for a melting bed but contracted and separated for a freezing bed. Theoretical basal shear-stress variations were also derived for ice streams along marine ice-sheet margins and ice lobes along terrestrial ice-sheet margins on the assumption that the entire area of their bed was wet so that further melting increased the water-layer thickness, which would then be decreased by freezing. Melting was assumed to continue to the grounding line of an ice stream and the minimum-slope surface inflection line of an ice lobe, where freezing began and continued to the ice-lobe terminus. Ice–bed uncoupling is complete at an ice-stream grounding line and maximized at an ice-lobe minimum-slope inflection line, so ice velocity and consequent generation of frictional heat were assumed to reach maxima across these lines. Theoretical basal shear-stress variations were derived for the zone of converging flow at the heads of ice streams and ice lobes, and from domes to saddles along the ice divide for both frozen and melted beds.


2002 ◽  
Vol 48 (163) ◽  
pp. 552-558 ◽  
Author(s):  
Marjorie Schmeltz ◽  
Eric Rignot ◽  
Todd K. Dupont ◽  
Douglas R. MacAyeal

AbstractWe use a finite-element model of coupled ice-stream/ice-shelf flow to study the sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions. By tuning a softening coefficient of the ice along the glacier margins, and a basal friction coefficient controlling the distribution of basal shear stress underneath the ice stream, we are able to match model velocity to that observed with interferometric synthetic aperture radar (InSAR). We use the model to investigate the effect of small perturbations on ice flow. We find that a 5.5–13% reduction in our initial ice-shelf area increases the glacier velocity by 3.5–10% at the grounding line. The removal of the entire ice shelf increases the grounding-line velocity by > 70%. The changes in velocity associated with ice-shelf reduction are felt several tens of km inland. Alternatively, a 5% reduction in basal shear stress increases the glacier velocity by 13% at the grounding line. By contrast, softening of the glacier side margins would have to be increased a lot more to produce a comparable change in ice velocity. Hence, both the ice-shelf buttressing and the basal shear stress contribute significant resistance to the flow of Pine Island Glacier.


2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


1979 ◽  
Vol 24 (90) ◽  
pp. 500 ◽  
Author(s):  
C. R. Bentley ◽  
L. Greischar

Abstract Taking various retreat-rates for the presumed grounded ice sheet in the Ross embayment during Wisconsin time, as calculated by Thomas (Thomas and Bentley, 1978), and assuming a time constant of 4400 years for isostatic rebound, a sea-floor uplift of 100±50 m still to be expected in the grid western part of the Ross Ice Shelf can be calculated. The expected uplift diminishes from grid west to grid east, and is probably negligible in the eastern half of the shelf area. There are extensive areas near the present grounding line where the water depth beneath the shelf is less than 100 m, so that uplift would lead to grounding. As grounding occurred, the neighboring ice shelf would thicken, causing grounding to advance farther. This process would probably extend the grounding line to a position running grid north-eastward across the shelf from the seaward end of Roosevelt Island, deeply indented by the extensions of the present ice streams. Floating ice would remain in the grid south-eastern half of the shelf.


2017 ◽  
Vol 63 (242) ◽  
pp. 959-972
Author(s):  
METTE K. GILLESPIE ◽  
WENDY LAWSON ◽  
WOLFGANG RACK ◽  
BRIAN ANDERSON ◽  
DONALD D. BLANKENSHIP ◽  
...  

ABSTRACTThe Darwin–Hatherton Glacial system (DHGS) connects the East Antarctic Ice Sheet (EAIS) with the Ross Ice Shelf and is a key area for understanding past variations in ice thickness of surrounding ice masses. Here we present the first detailed measurements of ice thickness and grounding zone characteristics of the DHGS as well as new measurements of ice velocity. The results illustrate the changes that occur in glacier geometry and ice flux as ice flows from the polar plateau and into the Ross Ice Shelf. The ice discharge and the mean basal ice shelf melt for the first 8.5 km downstream of the grounding line amount to 0.24 ± 0.05 km3 a−1 and 0.3 ± 0.1 m a−1, respectively. As the ice begins to float, ice thickness decreases rapidly and basal terraces develop. Constructed maps of glacier geometry suggest that ice drainage from the EAIS into the Darwin Glacier occurs primarily through a deep subglacial canyon. By contrast, ice thins to <200 m at the head of the much slower flowing Hatherton Glacier. The glaciological field study establishes an improved basis for the interpretation of glacial drift sheets at the link between the EAIS and the Ross Ice Sheet.


1979 ◽  
Vol 24 (90) ◽  
pp. 167-177 ◽  
Author(s):  
Robert H. Thomas

AbstractMarine ice sheets rest on land that, for the most part, is below sea-level. Ice that flows across the grounding line, where the ice sheet becomes afloat, either calves into icebergs or forms a floating ice shelf joined to the ice sheet. At the grounding line there is a transition from ice-sheet dynamics to ice-shelf dynamics, and the creep-thinning rate in this region is very sensitive to sea depth; rising sea-level causes increased thinning-rates and grounding-line retreat, falling sea-level has the reverse effect. If the bedrock slopes down towards the centre of the ice sheet there may be only two stable modes: a freely-floating ice shelf or a marine ice sheet that extends to the edge of the continental shelf. Once started, collapse of such an ice sheet to form an ice shelf may take place extremely rapidly. Ice shelves which form in embayments of a marine ice sheet, or which are partially grounded, have a stabilizing influence since ice flowing across the grounding line has to push the ice shelf past its sides. Retreat of the grounding line tends to enlarge the ice shelf, which ultimately may become large enough to prevent excessive outflow from the ice sheet so that a new equilibrium grounding line is established; removal of the ice shelf would allow retreat to continue. During the late-Wisconsin glacial maximum there may have been marine ice sheets in the northern hemisphere but the only current example is the West Antarctic ice sheet. This is buttressed by the Ross and Ronne Ice Shelves, and if climatic warming were to prohibit the existence of these ice shelves then the ice sheet would collapse. Field observations suggest that, at present, the ice sheet may be advancing into parts of the Ross Ice Shelf. Such advance, however, would not ensure the security of the ice sheet since ice streams that drain to the north appear to flow directly into the sea with little or no ice shelf to buttress them. If these ice streams do not flow over a sufficiently high bedrock sill then they provide the most likely avenues for ice-sheet retreat.


2015 ◽  
Vol 9 (2) ◽  
pp. 1887-1942 ◽  
Author(s):  
S. L. Cornford ◽  
D. F. Martin ◽  
A. J. Payne ◽  
E. G. Ng ◽  
A. M. Le Brocq ◽  
...  

Abstract. We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet. Each of the simulations begins with a geometry and velocity close to present day observations, and evolves according to variation in meteoric ice accumulation, ice shelf melting, and mesh resolution. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rates anomalies that remove most of the ice shelves over a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions, ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Sensitivity to mesh resolution is spurious, and we find that sub-kilometer resolution is needed along most regions of the grounding line to avoid systematic under-estimates of the retreat rate, although resolution requirements are more stringent in some regions – for example the Amundsen Sea Embayment – than others – such as the Möller and Institute ice streams.


2011 ◽  
Vol 31 (3-4) ◽  
pp. 347-356 ◽  
Author(s):  
R. H. Thomas

Ice streams that drain marine ice sheets are particularly susceptible to catastrophic retreat because they flow through bedrock troughs, and grounding line migration would produce a calving bay filled either with an ice shelf or with icebergs. Geological evidence suggests that a calving bay formed in the Laurentian Channel and the St. Lawrence valley after the late-Wisconsin maximum. Retreat rates in this calving bay are calculated for a variety of possible models assuming that locally the late-Wisconsin Laurentide ice sheet extended to the edge of the continental shelf. If an ice shelf forms in front of the retreating grounding line, and the shear stress between the ice shelf and its margins is one bar, retreat continues for only 150 km. Further retreat requires lubrication by ice with a strain-dependent preferred crystal fabric that develops between the ice shelf and its sides, or by complete removal of the ice shelf. Under these conditions the first 300 km of retreat takes at least 3000 to 6000 years. Thereafter, further retreat is rapid until, if a lubricated ice shelf is present, a new equilibrium grounding line is established about 1100 km from the edge of the continental shelf. If massive calving of icebergs occurred at, or near the grounding line, then retreat would continue up the St. Lawrence valley through to Lake Ontario. Of the various models considered, the minimum time taken for retreat from a point 300 km inland from the edge of the continental shelf through to Lake Ontario is about 2000 years.


Sign in / Sign up

Export Citation Format

Share Document