scholarly journals Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes

2018 ◽  
Vol 12 (1) ◽  
pp. 49-70 ◽  
Author(s):  
Werner M. J. Lazeroms ◽  
Adrian Jenkins ◽  
G. Hilmar Gudmundsson ◽  
Roderik S. W. van de Wal

Abstract. Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

2017 ◽  
Author(s):  
Werner M. J. Lazeroms ◽  
Adrian Jenkins ◽  
G. Hilmar Gudmundsson ◽  
Roderik S. W. van de Wal

Abstract. Basal melting below ice shelves is a major factor in the decline of the Antarctic ice sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a nonlinear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth zgl and the local slope α of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for zgl and α for any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and flow patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. The result is a realistic map of basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field are therefore promising tools for future simulations of the Antarctic ice sheet.


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


1998 ◽  
Vol 27 ◽  
pp. 161-168 ◽  
Author(s):  
Roland C. Warner ◽  
W.Κ. Budd

The primary effects of global warming on the Antarctic ice sheet can involve increases in surface melt for limited areas at lower elevations, increases in net accumulation, and increased basal melting under floating ice. For moderate global wanning, resulting in ocean temperature increases of a few °C, the large- increase in basal melting can become the dominant factor in the long-term response of the ice sheet. The results from ice-sheet modelling show that the increased basal melt rates lead to a reduction of the ice shelves, increased strain rates and flow at the grounding lines, then thinning and floating of the marine ice sheets, with consequential further basal melting. The mass loss from basal melting is counteracted to some extent by the increased accumulation, but in the long term the area of ice cover decreases, particularly in West Antarctica, and the mass loss can dominate. The ice-sheet ice-shelf model of Budd and others (1994) with 20 km resolution has been modified and used to carry out a number of sensitivity studies of the long-term response of the ice sheet to prescribed amounts of global warming. The changes in the ice sheet are computed out to near-equilibrium, but most of the changes take place with in the first lew thousand years. For a global mean temperature increase of 3°C with an ice-shelf basal melt rate of 5 m a−1 the ice shelves disappear with in the first few hundred years, and the marine-based parts of the ice sheet thin and retreat. By 2000 years the West Antarctic region is reduced to a number of small, isolated ice caps based on the bedrock regions which are near or above sea level. This allows the warmer surface ocean water to circulate through the archipelago in summer, causing a large change to the local climate of the region.


2020 ◽  
Author(s):  
Frazer Christie ◽  
Toby Benham ◽  
Julian Dowdeswell

<p>The Antarctic Peninsula is one of the most rapidly warming regions on Earth. There, the recent destabilization of the Larsen A and B ice shelves has been directly attributed to this warming, in concert with anomalous changes in ocean circulation. Having rapidly accelerated and retreated following the demise of Larsen A and B, the inland glaciers once feeding these ice shelves now form a significant proportion of Antarctica’s total contribution to global sea-level rise, and have become an exemplar for the fate of the wider Antarctic Ice Sheet under a changing climate. Together with other indicators of glaciological instability observable from satellites, abrupt pre-collapse changes in ice shelf terminus position are believed to have presaged the imminent disintegration of Larsen A and B, which necessitates the need for routine, close observation of this sector in order to accurately forecast the future stability of the Antarctic Peninsula Ice Sheet. To date, however, detailed records of ice terminus position along this region of Antarctica only span the observational period c.1950 to 2008, despite several significant changes to the coastline over the last decade, including the calving of giant iceberg A-68a from Larsen C Ice Shelf in 2017.</p><p>Here, we present high-resolution, annual records of ice terminus change along the entire western Weddell Sea Sector, extending southwards from the former Larsen A Ice Shelf on the eastern Antarctic Peninsula to the periphery of Filchner Ice Shelf. Terminus positions were recovered primarily from Sentinel-1a/b, TerraSAR-X and ALOS-PALSAR SAR imagery acquired over the period 2009-2019, and were supplemented with Sentinel-2a/b, Landsat 7 ETM+ and Landsat 8 OLI optical imagery across regions of complex terrain.</p><p>Confounding Antarctic Ice Sheet-wide trends of increased glacial recession and mass loss over the long-term satellite era, we detect glaciological advance along 83% of the ice shelves fringing the eastern Antarctic Peninsula between 2009 and 2019. With the exception of SCAR Inlet, where the advance of its terminus position is attributable to long-lasting ice dynamical processes following the disintegration of Larsen B, this phenomenon lies in close agreement with recent observations of unchanged or arrested rates of ice flow and thinning along the coastline. Global climate reanalysis and satellite passive-microwave records reveal that this spatially homogenous advance can be attributed to an enhanced buttressing effect imparted on the eastern Antarctic Peninsula’s ice shelves, governed primarily by regional-scale increases in the delivery and concentration of sea ice proximal to the coastline.</p>


2010 ◽  
Vol 51 (55) ◽  
pp. 41-48 ◽  
Author(s):  
Fuyuki Saito ◽  
Ayako Abe-Ouchi

AbstractNumerical experiments are performed for the Antarctic ice sheet to study the sensitivity of the ice volume to variations in the area of grounded ice and to changes in the climate during the most recent deglaciation. The effect of the variations in the grounded area is found to be the major source of changes in the ice volume, while the effect of climate change was minor. The maximum possible contribution of the ice-volume change to sea-level rise during the deglaciation is estimated to be 36 m, which covers most values estimated in previous studies. The effect of the advance of the ice-sheet margin over those regions not connected to the major ice shelves contributes one-third of the total ice-volume change, which is comparable to the effect of the grounding of the Filchner–Ronne Ice Shelf and the contribution of the Ross and Amery Ice Shelves together.


Author(s):  
Eric Rignot

The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1 m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 °C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.


2021 ◽  
Author(s):  
Celia A. Baumhoer ◽  
Andreas Dietz ◽  
Mariel Dirscherl ◽  
Claudia Kuenzer

<p>Antarctica’s coastline is constantly changing by moving glacier and ice shelf fronts. The extent of glaciers and ice shelves influences the ice discharge and sea level contribution of the Antarctic Ice Sheet. Therefore, it is crucial to assess where ice shelf areas with strong buttressing forces are lost. So far, those changes have not been assessed for entire Antarctica within comparable time frames.</p><p>We present a framework for circum-Antarctic coastline extraction based on a U-Net architecture. Antarctic coastal-change is calculated by using a deep learning derived coastline for the year 2018 in combination with earlier manual derived coastlines of 1997 and 2009. For the first time, this allows to compare circum-Antarctic changes in glacier and ice shelf front position for the last two decades. We found that the Antarctic Ice Sheet area decreased by -29,618±1,193 km<sup>2</sup> in extent between 1997-2008 and gained an area of 7,108±1,029km<sup>2</sup> between 2009 and 2018. Retreat dominated for the Antarctic Peninsula and West Antarctica and advance for the East Antarctic Ice Sheet over the entire investigation period. The only exception in East Antarctica was Wilkes Land experiencing simultaneous calving front retreat of several glaciers between 2009-2018. Biggest tabular iceberg calving events occurred at Ronne and Ross Ice Shelf within their natural calving cycle between 1997-2008. Future work includes the continuous mapping of Antarctica’s coastal-change on a more frequent temporal scale.  </p>


1990 ◽  
Vol 14 ◽  
pp. 17-19 ◽  
Author(s):  
W.J. Böhmer ◽  
K. Herterich

We present a simplified numerical three-dimensional ice-sheet/ice-shelf model with a coarse horizontal resolution (100 km), designed for simulations of ice-volume changes on ice-age time scales (100 000 years and longer). The ice-sheet part uses the shallow-ice approximation to determine the flow, and includes a three-dimensional temperature calculation. The ice shelf is described in a quasi-stationary way. Ice-shelf thickness depends only on the thicknesses at the grounding line and the distances to the grounding line. The effect of the transition zone between ice sheet and ice shelf (assuming a width ≪100 km) is parameterized in terms of the ice thicknesses defined on the coarse grid. The characteristics at the base of the transition zone formally enter through a friction coefficient μ. We performed a series of sensitivity experiments with the coupled system, by integrating over 10 000 model years, starting from the present (modelled) state of the Antarctic and forcing the model by currently-observed accumulation rates. The position of the grounding line of the ice-sheet/ice-shelf model is quite sensitive to the choice of the friction parameter μ (in the range 0.025 > μ > 0.01). With μ = 0.05, the grounding line was maintained at the currently-observed position in the model.


2021 ◽  
Vol 13 (9) ◽  
pp. 4583-4601
Author(s):  
Mengzhen Qi ◽  
Yan Liu ◽  
Jiping Liu ◽  
Xiao Cheng ◽  
Yijing Lin ◽  
...  

Abstract. Iceberg calving is the main process that facilitates the dynamic mass loss of ice sheets into the ocean, which accounts for approximately half of the mass loss of the Antarctic ice sheet. Fine-scale calving variability observations can help reveal the calving mechanisms and identify the principal processes that influence how the changing climate affects global sea level through the ice shelf buttressing effect on the Antarctic ice sheet. Iceberg calving from entire ice shelves for short time intervals or from specific ice shelves for long time intervals has been monitored before, but there is still a lack of consistent, long-term, and high-precision records on independent calving events for all of the Antarctic ice shelves. In this study, a 15-year annual iceberg calving product measuring every independent calving event larger than 1 km2 over all of the Antarctic ice shelves that occurred from August 2005 to August 2020 was developed based on 16 years of continuous satellite observations. First, the expansion of the ice shelf frontal coastline was simulated according to ice velocity; following this, the calved areas, which are considered to be the differences between the simulated coastline, were manually delineated, and the actual coastline was derived from the corresponding satellite imagery, based on multisource optical and synthetic aperture radar (SAR) images. The product provides detailed information on each calving event, including the associated year of occurrence, area, size, average thickness, mass, recurrence interval, and measurement uncertainties. A total of 1975 annual calving events larger than 1 km2 were detected on the Antarctic ice shelves from August 2005 to August 2020. The average annual calved area was measured as 3549.1 km2 with an uncertainty value of 14.3 km2, and the average calving rate was measured as 770.3 Gt yr−1 with an uncertainty value of 29.5 Gt yr−1. The number of calving events, calved area, and calved mass fluctuated moderately during the first decade, followed by a dramatic increase from 2015/2016 to 2019/2020. During the dataset period, large ice shelves, such as the Ronne–Filchner and Ross ice shelves, advanced with low calving frequency, whereas small- and medium-sized ice shelves retreated and calved more frequently. Iceberg calving of ice shelves is most prevalent in West Antarctica, followed by the Antarctic Peninsula and Wilkes Land in East Antarctica. The annual iceberg calving event dataset of Antarctic ice shelves provides consistent and precise calving observations with the longest time coverage. The dataset provides multidimensional variables for each independent calving event that can be used to study detailed spatial–temporal variations in Antarctic iceberg calving. The dataset can also be used to study ice sheet mass balance, calving mechanisms, and responses of iceberg calving to climate change. The dataset, entitled “Annual iceberg calving dataset of the Antarctic ice shelves (2005–2020)”, is shared via the National Tibetan Plateau Data Center: https://doi.org/10.11888/Glacio.tpdc.271250 (Qi et al., 2021). In addition, the average annual calving rate of 18.4±6.7 Gt yr−1 for calving events smaller than 1 km2 of the Antarctic ice shelves and the calving rate of 166.7±15.2 Gt yr−1 for the marine-terminating glaciers were estimated.


2022 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Derui Xu ◽  
Xueyuan Tang ◽  
Shuhu Yang ◽  
Yun Zhang ◽  
Lijuan Wang ◽  
...  

Due to rapid global warming, the relationship between the mass loss of the Antarctic ice sheet and rising sea levels are attracting widespread attention. The Lambert–Amery glacial system is the largest drainage system in East Antarctica, and its mass balance has an important influence on the stability of the Antarctic ice sheet. In this paper, the recent ice flux in the Lambert Glacier of the Lambert–Amery system was systematically analyzed based on recently updated remote sensing data. According to Landsat-8 ice velocity data from 2018 to April 2019 and the updated Bedmachine v2 ice thickness dataset in 2021, the contribution of ice flux approximately 140 km downstream from Dome A in the Lambert Glacier area to downstream from the glacier is 8.5 ± 1.9, and the ice flux in the middle of the convergence region is 18.9 ± 2.9. The ice mass input into the Amery ice shelf through the grounding line of the whole glacier is 19.9 ± 1.3. The ice flux output from the mainstream area of the grounding line is 19.3 ± 1.0. Using the annual SMB data of the regional atmospheric climate model (RACMO v2.3) as the quality input, the mass balance of the upper, middle, and lower reaches of the Lambert Glacier was analyzed. The results show that recent positive accumulation appears in the middle region of the glacier (about 74–78°S, 67–85°E) and the net accumulation of the whole glacier is 2.4 ± 3.5. Although the mass balance of the Lambert Glacier continues to show a positive accumulation, and the positive value in the region is decreasing compared with values obtained in early 2000.


Sign in / Sign up

Export Citation Format

Share Document