scholarly journals Observation of the process of snow accumulation on the Antarctic Plateau by time lapse laser scanning

2019 ◽  
Vol 13 (7) ◽  
pp. 1983-1999 ◽  
Author(s):  
Ghislain Picard ◽  
Laurent Arnaud ◽  
Romain Caneill ◽  
Eric Lefebvre ◽  
Maxim Lamare

Abstract. Snow accumulation is the main positive component of the mass balance in Antarctica. In contrast to the major efforts deployed to estimate its overall value on a continental scale – to assess the contribution of the ice sheet to sea level rise – knowledge about the accumulation process itself is relatively poor, although many complex phenomena occur between snowfall and the definitive settling of the snow particles on the snowpack. Here we exploit a dataset of near-daily surface elevation maps recorded over 3 years at Dome C using an automatic laser scanner sampling 40–100 m2 in area. We find that the averaged accumulation is relatively regular over the 3 years at a rate of +8.7 cm yr−1. Despite this overall regularity, the surface changes very frequently (every 3 d on average) due to snow erosion and heterogeneous snow deposition that we call accumulation by “patches”. Most of these patches (60 %–85 %) are ephemeral but can survive a few weeks before being eroded. As a result, the surface is continuously rough (6–8 cm root-mean-square height) featuring meter-scale dunes aligned along the wind and larger, decameter-scale undulations. Additionally, we deduce the age of the snow present at a given time on the surface from elevation time series and find that snow age spans over more than a year. Some of the patches ultimately settle, leading to a heterogeneous internal structure which reflects the surface heterogeneity, with many snowfall events missing at a given point, whilst many others are overrepresented. These findings have important consequences for several research topics including surface mass balance, surface energy budget, photochemistry, snowpack evolution, and the interpretation of the signals archived in ice cores.

2019 ◽  
Author(s):  
Ghislain Picard ◽  
Laurent Arnaud ◽  
Romain Caneil ◽  
Eric Lefebvre ◽  
Maxim Lamare

Abstract. Snow accumulation is the main positive component of the mass balance in Antarctica. In contrast to the major efforts deployed to estimate its overall value on a continental scale – to assess the contribution of the ice-sheet to sea-level rise – knowledge about the accumulation process itself is relatively poor, although many complex phenomena occur between snowfall and the definitive settling of the snow particles on the snowpack. Here we exploit a dataset of near-daily surface elevation maps recorded over three years at Dome C using an automatic laserscanner sampling 40–100 m2 in area. We find that the averaged accumulation is relatively regular over the three years at a rate of +8.7 cm yr−1. Despite this overall regularity, the surface changes very frequently (every 3 days on average) due to snow erosion and heterogeneous snow deposition that we call accumulation by patch. Most of these patches (60–85 %) are ephemeral but can survive a few weeks before being eroded. As a result, the surface is continuously rough (6–8 cm root mean square height) featuring meter-scale dunes aligned along the wind and larger, decameter-scale undulations. Additionally, we deduce the age of the snow present at a given time on the surface from elevation timeseries and find that snow age spans over more than a year. Some of the patches ultimately settle, leading to an heterogeneous internal structure which reflects the surface heterogeneity, with many snowfall events missing at a given point, whilst many others are over represented. These findings have important consequences for several research topics including surface mass balance, surface energy budget, photochemistry, snowpack evolution and the interpretation of the signals archived in ice cores.


2020 ◽  
Author(s):  
Thore Kausch ◽  
Stef Lhermitte ◽  
Jan T.M. Lenaerts ◽  
Nander Wever ◽  
Mana Inoue ◽  
...  

<p>About 20% of all snow accumulation in Antarctica occurs on the ice shelfs and ice rises, locations within the ice shelf where the ice is locally grounded on topography. These ice rises largely control the spatial surface mass balance (SMB) distribution by inducing snowfall variability due to orographic uplift and by inducing wind erosion due altering the wind conditions. Moreover these ice rises buttress the ice flow and represent an ideal drilling locations for ice cores.</p><p>In this study we assess the connection between snowfall variability and wind erosion to provide a better understanding of how ice rises impact SMB variability, how well this is captured in the regional atmospheric climate model RACMO, and the implications of this SMB variability for ice rises as an ice core drilling side. By combining ground penetrating radar profiles from two ice rises in Dronning Maud Land with ice core dating we reconstruct spatial and temporal SMB variations across both ice rises from 1982 to 2017. Subsequently, the observed SMB is compared with output from RACMO, SnowModel to quantify the contribution of the different processes that control the spatial SMB variability across the ice rises. Finally, the observed SMB is compared with Sentinel-1 backscatter data to extrapolate spatial SMB trends over larger areas.</p><p>Our results show snowfall-driven differences of up to ~ 0.24 m w.e./yr between the windward and the leeward side of both ice rises as well as a local erosion driven minimum at the peak of the ice rises. RACMO captures the snowfall-driven differences, but overestimates their magnitude, whereas the erosion on the peak can be reproduced by SnowModel with RACMO forcing. Observed temporal variability of the average SMBs calculated for 4 time intervals in the 1982-2017 range are low at the peak of the easternmost ice rise (~ 0.03 m w.e./yr), while being three times higher (~ 0.1 m w.e./yr) on the windward side of the ice rise. This implicates that at the peak of the ice rise, higher snowfall, driven by regional processes, such as orographic uplift, is balanced out by local erosion.  Comparison of the observed SMB gradients with Sentinel-1 data finally shows the potential of SAR satellite observations to represent spatial variability in SMB across ice shelves and ice rises.</p>


2016 ◽  
Vol 10 (4) ◽  
pp. 1739-1752 ◽  
Author(s):  
Lora S. Koenig ◽  
Alvaro Ivanoff ◽  
Patrick M. Alexander ◽  
Joseph A. MacGregor ◽  
Xavier Fettweis ◽  
...  

Abstract. Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2–6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009–2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.


2020 ◽  
Vol 14 (10) ◽  
pp. 3367-3380
Author(s):  
Thore Kausch ◽  
Stef Lhermitte ◽  
Jan T. M. Lenaerts ◽  
Nander Wever ◽  
Mana Inoue ◽  
...  

Abstract. About 20 % of all snow accumulation in Antarctica occurs on the ice shelves. There, ice rises control the spatial surface mass balance (SMB) distribution by inducing snowfall variability and wind erosion due to their topography. Moreover these ice rises buttress the ice flow and represent ideal drilling locations for ice cores. In this study we assess the connection between snowfall variability and wind erosion to provide a better understanding of how ice rises impact SMB variability, how well this is captured in the regional atmospheric climate model RACMO2 and the implications of this SMB variability for ice rises as an ice core drilling site. By combining ground-penetrating radar (GPR) profiles from two ice rises in Dronning Maud Land with ice core dating, we reconstruct spatial and temporal SMB variations from 1983 to 2018 and compare the observed SMB with output from RACMO2 and SnowModel. Our results show snowfall-driven differences of up to 1.5 times higher SMB on the windward side of both ice rises than on the leeward side as well as a local erosion-driven minimum at the ice divide of the ice rises. RACMO2 captures the snowfall-driven differences but overestimates their magnitude, whereas the erosion on the peak can be reproduced by SnowModel with RACMO2 forcing. Observed temporal variability of the average SMBs, retrieved from the GPR data for four time intervals in the 1983–2018 range, are low at the peak of the easternmost ice rise (∼0.06 mw.e.yr-1), while they are higher (∼0.09 mw.e.yr-1) on the windward side of the ice rise. This implies that at the peak of the ice rise, higher snowfall, driven by orographic uplift, is balanced out by local erosion. As a consequence of this, the SMB recovered from the ice core matches the SMB from the GPR at the peak of the ice rise but not at the windward side of the ice rise, suggesting that the SMB signal is damped in the ice core.


2020 ◽  
Author(s):  
Thore Kausch ◽  
Stef Lhermitte ◽  
Jan T. M. Lenaerts ◽  
Nander Wever ◽  
Mana Inoue ◽  
...  

Abstract. About 20 % of all snow accumulation in Antarctica occurs on the ice shelves. There, ice rises control the spatial surface mass balance (SMB) distribution by inducing snowfall variability and wind erosion due to their topography. Moreover these ice rises buttress the ice flow and represent ideal drilling locations for ice cores. In this study we assess the connection between snowfall variability and wind erosion to provide a better understanding of how ice rises impact SMB variability, how well this is captured in the regional atmospheric climate model RACMO2, and the implications of this SMB variability for ice rises as an ice core drilling site. By combining ground penetrating radar (GPR) profiles from two ice rises in Dronning Maud Land with ice core dating we reconstruct spatial and temporal SMB variations from 1982 to 2017 and compare the observed SMB with output from RACMO2 and SnowModel. Our results show snowfall driven differences of up to 1.5 times higher SMB on the windward side of both ice rises than on the leeward side, as well as a local erosion driven minimum at the ice divide of the ice rises. RACMO2 captures the snowfall driven differences, but overestimates their magnitude, whereas the erosion on the peak can be reproduced by SnowModel with RACMO2 forcing. Observed temporal variability of the average SMBs, retrieved from the GPR data for four time intervals in the 1982–2017 range, are low at the peak of the easternmost ice rise (~ 0.03 m w.e./yr), while being three times higher (~ 0.1 m w.e./yr) on the windward side of the ice rise. This implies that at the peak of the ice rise, higher snowfall, driven by orographic uplift, is balanced out by local erosion. As a consequence of this the SMB recovered from the ice core matches the SMB from the GPR at the peak of the ice rise, but not at the windward side of the ice rise, suggesting that the SMB signal is dampened in the ice core.


2012 ◽  
Vol 6 (1) ◽  
pp. 821-848 ◽  
Author(s):  
M. Frezzotti ◽  
C. Scarchilli ◽  
S. Becagli ◽  
M. Proposito ◽  
S. Urbini

Abstract. Global climate models suggest that Antarctic snowfall should increase in a warming climate and mitigate sea level rise, mainly due to the greater moisture-holding capacity of the warmer atmosphere. Several processes act on snow accumulation or surface mass balance (SMB), introducing large uncertainties in the past, present, and future ice sheet mass balance. To provide an extended past perspective of the SMB of Antarctica, we used 66 firn/ice core records to reconstruct the temporal variability over the past eight centuries and in greater detail over the last two centuries. Our SMB reconstructions show that the changes over most of Antarctica are statistically negligible and the current SMB is not exceptionally high compared with the last eight centuries. However, a clear increase in accumulation of more than 10 % has occurred in high SMB coastal regions and over the highest part of the East Antarctic ice divide since 1960s. To explain the different behaviours between the coastal/ice divide sites and rest of Antarctica, we suggest that a higher frequency of blocking-anticyclones increases the precipitation at coastal sites, leading to the advection of moist air at the highest areas, whereas blowing snow and/or erosion have significant negative impacts on the SMB at windy sites. Eight centuries of SMB stacked records mirror the total solar irradiance, suggesting a link between the southern position of the Pacific Intertropical Convergence Zone and atmospheric circulation in Antarctica through the generation and propagation of a large-scale atmospheric wave train. Decadal records of the last eight centuries show that the observed increase in accumulation is not anomalous at the continental scale; indeed, high accumulation periods have also occurred in the past, during the 1370s and 1610s.


2020 ◽  
pp. 1-10
Author(s):  
Tate G. Meehan ◽  
H. P. Marshall ◽  
John H. Bradford ◽  
Robert L. Hawley ◽  
Thomas B. Overly ◽  
...  

Abstract We present continuous estimates of snow and firn density, layer depth and accumulation from a multi-channel, multi-offset, ground-penetrating radar traverse. Our method uses the electromagnetic velocity, estimated from waveform travel-times measured at common-midpoints between sources and receivers. Previously, common-midpoint radar experiments on ice sheets have been limited to point observations. We completed radar velocity analysis in the upper ~2 m to estimate the surface and average snow density of the Greenland Ice Sheet. We parameterized the Herron and Langway (1980) firn density and age model using the radar-derived snow density, radar-derived surface mass balance (2015–2017) and reanalysis-derived temperature data. We applied structure-oriented filtering to the radar image along constant age horizons and increased the depth at which horizons could be reliably interpreted. We reconstructed the historical instantaneous surface mass balance, which we averaged into annual and multidecadal products along a 78 km traverse for the period 1984–2017. We found good agreement between our physically constrained parameterization and a firn core collected from the dry snow accumulation zone, and gained insights into the spatial correlation of surface snow density.


2017 ◽  
Vol 11 (6) ◽  
pp. 2411-2426 ◽  
Author(s):  
Peter Kuipers Munneke ◽  
Daniel McGrath ◽  
Brooke Medley ◽  
Adrian Luckman ◽  
Suzanne Bevan ◽  
...  

Abstract. The surface mass balance (SMB) of the Larsen C ice shelf (LCIS), Antarctica, is poorly constrained due to a dearth of in situ observations. Combining several geophysical techniques, we reconstruct spatial and temporal patterns of SMB over the LCIS. Continuous time series of snow height (2.5–6 years) at five locations allow for multi-year estimates of seasonal and annual SMB over the LCIS. There is high interannual variability in SMB as well as spatial variability: in the north, SMB is 0.40 ± 0.06 to 0.41 ± 0.04 m w.e. year−1, while farther south, SMB is up to 0.50 ± 0.05 m w.e. year−1. This difference between north and south is corroborated by winter snow accumulation derived from an airborne radar survey from 2009, which showed an average snow thickness of 0.34 m w.e. north of 66° S, and 0.40 m w.e. south of 68° S. Analysis of ground-penetrating radar from several field campaigns allows for a longer-term perspective of spatial variations in SMB: a particularly strong and coherent reflection horizon below 25–44 m of water-equivalent ice and firn is observed in radargrams collected across the shelf. We propose that this horizon was formed synchronously across the ice shelf. Combining snow height observations, ground and airborne radar, and SMB output from a regional climate model yields a gridded estimate of SMB over the LCIS. It confirms that SMB increases from north to south, overprinted by a gradient of increasing SMB to the west, modulated in the west by föhn-induced sublimation. Previous observations show a strong decrease in firn air content toward the west, which we attribute to spatial patterns of melt, refreezing, and densification rather than SMB.


2016 ◽  
Vol 10 (6) ◽  
pp. 2763-2777 ◽  
Author(s):  
Carmen P. Vega ◽  
Elisabeth Schlosser ◽  
Dmitry V. Divine ◽  
Jack Kohler ◽  
Tõnu Martma ◽  
...  

Abstract. Three shallow firn cores were retrieved in the austral summers of 2011/12 and 2013/14 on the ice rises Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), all part of Fimbul Ice Shelf (FIS) in western Dronning Maud Land (DML), Antarctica. The cores were dated back to 1958 (KC), 1995 (KM), and 1996 (BI) by annual layer counting using high-resolution oxygen isotope (δ18O) data, and by identifying volcanic horizons using non-sea-salt sulfate (nssSO42−) data. The water stable isotope records show that the atmospheric signature of the annual snow accumulation cycle is well preserved in the firn column, especially at KM and BI. We are able to determine the annual surface mass balance (SMB), as well as the mean SMB values between identified volcanic horizons. Average SMB at the KM and BI sites (0.68 and 0.70 mw. e. yr−1) was higher than at the KC site (0.24 mw. e. yr−1), and there was greater temporal variability as well. Trends in the SMB and δ18O records from the KC core over the period of 1958–2012 agree well with other previously investigated cores in the area, thus the KC site could be considered the most representative of the climate of the region. Cores from KM and BI appear to be more affected by local meteorological conditions and surface topography. Our results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores, but that BI has the best preserved seasonal cycles of the three records and is thus the most optimal site for high-resolution studies of temporal variability of the climate signal. Deuterium excess data suggest a possible effect of seasonal moisture transport changes on the annual isotopic signal. In agreement with previous studies, large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios preserved at the core sites.


2016 ◽  
Vol 62 (236) ◽  
pp. 1037-1048 ◽  
Author(s):  
F. PARRENIN ◽  
S. FUJITA ◽  
A. ABE-OUCHI ◽  
K. KAWAMURA ◽  
V. MASSON-DELMOTTE ◽  
...  

ABSTRACTDocumenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice-sheet contribution to global mean sea-level change. Here we reconstruct past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronization of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 a, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, being small during cold periods and large during warm periods. Our results therefore reveal larger amplitudes of changes in SMB at EDC compared with DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared with DF. Within the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 0.2 from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends.


Sign in / Sign up

Export Citation Format

Share Document