scholarly journals Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland)

2021 ◽  
Vol 15 (9) ◽  
pp. 4445-4464
Author(s):  
Lander Van Tricht ◽  
Philippe Huybrechts ◽  
Jonas Van Breedam ◽  
Alexander Vanhulle ◽  
Kristof Van Oost ◽  
...  

Abstract. The surface mass balance (SMB) of a glacier provides the link between the glacier and the local climate. For this reason, it is intensively studied and monitored. However, major efforts are required to determine the point SMB at a sufficient number of locations to capture the heterogeneity of the SMB pattern. Furthermore, because of the time-consuming and costly nature of these measurements, detailed SMB measurements are carried out on only a limited number of glaciers. In this study, we investigate how to accurately determine the SMB in the ablation zone of Vadret da Morteratsch and Vadret Pers (Engadin, Switzerland) using the continuity equation method, based on the expression of conservation of mass for glacier flow with constant density. An elaborate dataset (spanning the 2017–2020 period) of high-resolution data derived from unoccupied aerial vehicle (UAV) measurements (surface elevation changes and surface velocities) is combined with reconstructed ice thickness fields (based on radar measurements). To determine the performance of the method, we compare modelled SMB with measured SMB values at the position of stakes. Our results indicate that with annual UAV surveys, it is possible to obtain SMB estimates with a mean absolute error smaller than 0.5 m of ice equivalent per year. Yet, our study demonstrates that to obtain these accuracies, it is necessary to consider the ice flow over spatial scales of several times the local ice thickness, accomplished in this study by applying an exponential decay filter. Furthermore, our study highlights the crucial importance of the ice thickness, which must be sufficiently well known in order to accurately apply the method. The latter currently seems to complicate the application of the continuity equation method to derive detailed SMB patterns on regional to global scales.

2021 ◽  
Author(s):  
Lander Van Tricht ◽  
Philippe Huybrechts ◽  
Jonas Van Breedam ◽  
Alexander Vanhulle ◽  
Kristof Van Oost ◽  
...  

Abstract. The surface mass balance of a glacier (SMB) provides the link between the glacier and the local climate. For this reason, it is intensively studied and monitored. However, major efforts are required to determine the SMB on a sufficient number of locations to capture the heterogeneity of the SMB pattern. Furthermore, because of the time-consuming and costly nature of these measurements, detailed SMB measurements are carried out on only a limited number of glaciers. In this study, we investigate how to accurately determine the SMB in the ablation zone of Vadret da Morteratsch and Vadret Pers (Engadin, Switzerland) using the continuity-equation method. For this, an elaborate dataset (spanning the 2017-2020 period) of high-resolution data derived from UAV measurements (surface elevation changes and surface velocities) is combined with reconstructed ice thickness fields (based on radar measurements). To determine the performance of the method, we compare modelled SMB with measured SMB values at the position of stakes. Our results indicate that with annual UAV surveys, it is possible to obtain SMB estimates with a mean absolute error of approximately 0.5 metre ice equivalent per year. Yet, our study demonstrates that in order to obtain these accuracies, it is necessary to consider the ice flow over spatial scales of several times the local ice thickness using an exponential decay filter. Furthermore, our study shows the crucial importance of the ice thickness, which must be sufficiently well known in order to apply the method. The latter currently hampers the application of the continuity-equation method to derive detailed SMB patterns on regional to global scales.


2018 ◽  
Vol 12 (9) ◽  
pp. 2981-2999 ◽  
Author(s):  
Jiangjun Ran ◽  
Miren Vizcaino ◽  
Pavel Ditmar ◽  
Michiel R. van den Broeke ◽  
Twila Moon ◽  
...  

Abstract. The Greenland Ice Sheet (GrIS) is currently losing ice mass. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE), surface mass balance (SMB) output of the Regional Atmospheric Climate Model v. 2 (RACMO2), and ice discharge estimates to analyze the mass budget of Greenland at various temporal and spatial scales. We find that the mean rate of mass variations in Greenland observed by GRACE was between −277 and −269 Gt yr−1 in 2003–2012. This estimate is consistent with the sum (i.e., -304±126 Gt yr−1) of individual contributions – surface mass balance (SMB, 216±122 Gt yr−1) and ice discharge (520±31 Gt yr−1) – and with previous studies. We further identify a seasonal mass anomaly throughout the GRACE record that peaks in July at 80–120 Gt and which we interpret to be due to a combination of englacial and subglacial water storage generated by summer surface melting. The robustness of this estimate is demonstrated by using both different GRACE-based solutions and different meltwater runoff estimates (namely, RACMO2.3, SNOWPACK, and MAR3.9). Meltwater storage in the ice sheet occurs primarily due to storage in the high-accumulation regions of the southeast and northwest parts of Greenland. Analysis of seasonal variations in outlet glacier discharge shows that the contribution of ice discharge to the observed signal is minor (at the level of only a few gigatonnes) and does not explain the seasonal differences between the total mass and SMB signals. With the improved quantification of meltwater storage at the seasonal scale, we highlight its importance for understanding glacio-hydrological processes and their contributions to the ice sheet mass variability.


2015 ◽  
Vol 9 (1) ◽  
pp. 25-35 ◽  
Author(s):  
M. Schaefer ◽  
H. Machguth ◽  
M. Falvey ◽  
G. Casassa ◽  
E. Rignot

Abstract. We present surface mass balance simulations of the Southern Patagonia Icefield (SPI) driven by downscaled reanalysis data. The simulations were evaluated and interpreted using geodetic mass balances, measured point balances and a complete velocity field of the icefield for spring 2004. The high measured accumulation of snow of up to 15.4 m w.e. yr−1 (meters water equivalent per year) as well as the high measured ablation of up to 11 m w.e. yr−1 is reproduced by the model. The overall modeled surface mass balance was positive and increasing during 1975–2011. Subtracting the surface mass balance from geodetic balances, calving fluxes were inferred. Mass losses of the SPI due to calving were strongly increasing from 1975–2000 to 2000–2011 and higher than losses due to surface melt. Calving fluxes were inferred for the individual glacier catchments and compared to fluxes estimated from velocity data. Measurements of ice thickness and flow velocities at the glaciers' front and spatially distributed accumulation measurements can help to reduce the uncertainties of the different terms in the mass balance of the Southern Patagonia Icefield.


2016 ◽  
Author(s):  
C. Vincent ◽  
P. Wagnon ◽  
J. M. Shea ◽  
W. W. Immerzel ◽  
P. D. A. Kraaijenbrink ◽  
...  

Abstract. Debris-covered glaciers occupy more than 1/4 of the total glacierized area in the Everest region of Nepal, yet the surface mass balance of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry and unmanned aerial vehicle (UAV) elevation models to derive the surface mass balance of the debris-covered Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is −0.93 m ice/year or −0.84 m water equivalent per year (w.e. a−1). The mean emergence velocity over this region, estimated from the total ice flux through a cross-section immediately above the debris-covered zone, is +0.37 m w.e. a−1. The debris-covered portion of the glacier thus has an area-averaged mass balance of −1.21 ± 0.2 m w.e. a−1 between 5240 and 5525 m above sea level (m a.s.l.). The surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8 m w.e. a−1) by the debris cover. The insulating effect of the debris cover largely dominates the enhanced ice ablation due to the supra-glacial ponds and exposed ice cliffs. This finding has major implications for modeling the future evolution of debris-covered glaciers.


1977 ◽  
Vol 18 (80) ◽  
pp. 359-371 ◽  
Author(s):  
I. M. Whillans

Abstract The continuity relationship that is often used in the study of ice sheets and ice shelves is developed by integrating the equation of continuity through the ice thickness. This equation is then integrated again with respect to horizontal distance from an ice divide, showing that the difference between the true ice velocity and the balance velocity, which is defined, is a measure of the time chance of the mass of a column through the ice thickness. The relationship is applied using data from along the “Byrd” station strain network, Antarctica. This region is found to be thinning slowly (0.03 m a−1 of ice of mean density) and uniformly, but it is still close to steady-state. The calculations would show a larger thinning rate if bottom sliding contributed more to the ice movement and integral shear contributed less, but the “Byrd” station bore-hole tilting results of Garfield and Ueda (1975, 1976), together with surface velocity measurements at “Byrd” station, indicate that most of the ice flow is by deformation within the ice mass. This large amount of internal deformation is more than that predicted by most “flow laws”, probably because of the strongly oriented ice-crystal fabric in the ice sheet. The cause of ice thinning is probably decreased surface mass balance beginning before A.D. 1550. The consistent relationship between measured velocity and balance velocity indicates that the ice flow is simple and that flow lines are in the same direction at depth as at the surface when considered smoothed over a distance of 10 km. Because the ice sheet is at present thinning, the balance velocity, calculated only from flow line and surface mass-balance data, and the somewhat mistaken assumption of steady-state is 15% less than the true ice velocity. This rather small difference confirms the use of balance-velocity estimates where velocity measurements are not available.


2018 ◽  
Author(s):  
Jiangjun Ran ◽  
Miren Vizcaino ◽  
Pavel Ditmar ◽  
Michiel R. van den Broeke ◽  
Twila Moon ◽  
...  

Abstract. The Greenland Ice Sheet (GrIS) is currently losing ice mass as the result of changes in the complex ice-climate interactions that have been driven by global climate change. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry mission GRACE, surface mass balance (SMB) output of RACMO 2.3, and ice discharge estimates to analyze the mass budget of Greenland at various temporal and spatial scales. Firstly, in agreement with previous estimates, we find that the rate of mass loss from Greenland observed by GRACE was between −277 and −269 Gt/yr in 2003–2012. This estimate is consistent with the sum of individual contributions: surface mass balance (SMB, around 216 ± 122 Gt/yr) and ice discharge (520 ± 31 Gt/yr), indicating a good performance of the regional climate model. Secondly, we examine the average accelerations of mass anomalies in Greenland over 2003–2012, suggesting that the SMB (−23.3 ± 2.7 Gt/yr2) contributes 75 % to the total acceleration observed by GRACE. The remaining contributions to the mass loss acceleration for entire Greenland are statistically insignificant. Finally and most importantly, this study suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. The robustness of this estimate is demonstrated by using both different GRACE-based solutions and different meltwater runoff estimates (namely, RACMO 2.3 and SNOWPACK). Meltwater storage in the ice sheet occurs primarily due to storage in the high-accumulation regions of the southeast (SE) and northwest (NW) parts of Greenland. Analysis of seasonal variations in outlet glacier discharge shows that the contribution of ice discharge to the observed signal is minor (at the level of only a few Gt) and does not explain the intra-annual differences between the total mass and SMB signals.


2014 ◽  
Vol 8 (3) ◽  
pp. 3117-3139
Author(s):  
M. Schaefer ◽  
H. Machguth ◽  
M. Falvey ◽  
G. Casassa ◽  
E. Rignot

Abstract. We present surface mass balance simulations of the Southern Patagonia Icefield driven by downscaled reanalysis data. The simulations were validated and interpreted using geodetic mass balances, measured point balances and a complete velocity field of the Icefield from spring 2004. The high measured accumulation of snow as well as the high measured ablation is reproduced by the model. The overall modeled surface mass balance was positive and increasing during 1975–2011. Subtracting the surface mass balance from geodetic balances, calving fluxes were inferred. Mass losses of the SPI due to calving were strongly increasing from 1975–2000 to 2000–2011 and higher than losses due to surface melt. Calving fluxes were inferred for the individual glacier catchments and compared to fluxes estimated from velocity data. Measurements of ice thickness and flow velocities at the glaciers' front and spatially distributed accumulation measurements can help to reduce the uncertainties of the different terms in the mass balance of the Southern Patagonia Icefield.


2016 ◽  
Vol 10 (4) ◽  
pp. 1845-1858 ◽  
Author(s):  
Christian Vincent ◽  
Patrick Wagnon ◽  
Joseph M. Shea ◽  
Walter W. Immerzeel ◽  
Philip Kraaijenbrink ◽  
...  

Abstract. Approximately 25 % of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is −0.93 m year−1 or −0.84 m water equivalent per year (w.e. a−1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37 m w.e. a−1. The debris-covered portion of the glacier thus has an area-averaged mass balance of −1.21 ± 0.2 m w.e. a−1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8 m w.e. a−1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.


1977 ◽  
Vol 18 (80) ◽  
pp. 359-371 ◽  
Author(s):  
I. M. Whillans

AbstractThe continuity relationship that is often used in the study of ice sheets and ice shelves is developed by integrating the equation of continuity through the ice thickness. This equation is then integrated again with respect to horizontal distance from an ice divide, showing that the difference between the true ice velocity and the balance velocity, which is defined, is a measure of the time chance of the mass of a column through the ice thickness.The relationship is applied using data from along the “Byrd” station strain network, Antarctica. This region is found to be thinning slowly (0.03 m a−1 of ice of mean density) and uniformly, but it is still close to steady-state. The calculations would show a larger thinning rate if bottom sliding contributed more to the ice movement and integral shear contributed less, but the “Byrd” station bore-hole tilting results of Garfield and Ueda (1975, 1976), together with surface velocity measurements at “Byrd” station, indicate that most of the ice flow is by deformation within the ice mass. This large amount of internal deformation is more than that predicted by most “flow laws”, probably because of the strongly oriented ice-crystal fabric in the ice sheet. The cause of ice thinning is probably decreased surface mass balance beginning before A.D. 1550.The consistent relationship between measured velocity and balance velocity indicates that the ice flow is simple and that flow lines are in the same direction at depth as at the surface when considered smoothed over a distance of 10 km. Because the ice sheet is at present thinning, the balance velocity, calculated only from flow line and surface mass-balance data, and the somewhat mistaken assumption of steady-state is 15% less than the true ice velocity. This rather small difference confirms the use of balance-velocity estimates where velocity measurements are not available.


2012 ◽  
Vol 58 (207) ◽  
pp. 119-133 ◽  
Author(s):  
Christopher Nuth ◽  
Thomas Vikhamar Schuler ◽  
Jack Kohler ◽  
Bas Altena ◽  
Jon Ove Hagen

AbstractThis study independently quantifies geodetic elevation change and models surface mass balance to solve the continuity equation. The approach is tested on two dynamically different glaciers, Kongsvegen and Kronebreen in northwest Svalbard, through two time epochs, 1966-1990/95 (I) and 1990/95-2007 (II). On Kongsvegen, a dynamically inactive glacier, the residual term represents an error associated with determining elevation changes and surface mass balance. It is apparent that centerline mass-balance estimates are not representative of the entire glacier, which we relate to center-line accumulation being larger than the elevation bin average. On Kronebreen, a fast-flowing and actively calving glacier, a significant part of the residual is identified with the long-term calving flux. For both glaciers, the cumulative surface mass balance remained close to zero during the first epoch but became increasingly negative in the second epoch. The long-term calving flux of Kronebreen is estimated to be -0.14 ± 0.03 km3 w.e.a-1 during epoch I and-0.20 ± 0.05 km3 w.e.a-1 in epoch II.


Sign in / Sign up

Export Citation Format

Share Document