scholarly journals A note on the influence of atmospheric model resolution in coupled climate–ice-sheet simulations

2017 ◽  
Author(s):  
Marcus Löfverström ◽  
Johan Liakka

Abstract. Coupled climate–ice-sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial time scales, which is beyond the practical integration limit for most Earth-system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromises accuracy for speed). Here, we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality of a standalone ice-sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice-sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian Ice Sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice-sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases are not improving in the same way in Eurasia, though the latter simulates the continent-wide Laurentide Ice Sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a deterioration of the atmospheric climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem using low-resolution atmospheric models in these types of experiments.

2018 ◽  
Vol 12 (4) ◽  
pp. 1499-1510 ◽  
Author(s):  
Marcus Lofverstrom ◽  
Johan Liakka

Abstract. Coupled climate–ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4∘), T42 (2.8∘), T31 (3.8∘), and T21 (5.6∘). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.


1984 ◽  
Vol 5 ◽  
pp. 100-105 ◽  
Author(s):  
S. Manabe ◽  
A. J. Broccoli

The climatic influence of the land ice which existed 18 ka BP is investigated using a climate model developed at the Geophysical Fluid Dynamics Laboratory of the National Oceanic and Atmospheric Administration. The model consists of an atmospheric general circulation model coupled with a static mixed layer ocean model. Simulated climates are obtained from each of two versions of the model: one with the land-ice distribution of the present and the other with that of 18 ka BP.In the northern hemisphere, the difference in the distribution of sea surface temperature (SST) between the two experiments resembles the difference between the SST at 18 ka BP and at present as estimated by CLIMAP Project Members (1981). In the northern hemisphere a substantial lowering of air temperature also occurs in winter, with a less pronounced cooling during summer. The mid-tropospheric flow field is influenced by the Laurentide ice sheet and features a split jet stream straddling the ice sheet and a long wave trough along the east coast of North America. In the southern hemisphere of 18 ka BP, the ice sheet has little influence on temperature. An examination of hemispheric heat balances indicates that this is because only a small change in interhemispheric heat transport exists, as the In situ radiative compensation in the northern hemisphere counterbalances the effective reflection of solar radiation by continental ice sheets.Hydrologic changes in the model climate are also found, with statistically significant decreases in soil moisture occurring in a zone located to the south of the ice sheets in North America and Eurasia. These findings are consistent with some geological evidence of regionally drier climates from the last glacial maximum.


1984 ◽  
Vol 5 ◽  
pp. 100-105 ◽  
Author(s):  
S. Manabe ◽  
A. J. Broccoli

The climatic influence of the land ice which existed 18 ka BP is investigated using a climate model developed at the Geophysical Fluid Dynamics Laboratory of the National Oceanic and Atmospheric Administration. The model consists of an atmospheric general circulation model coupled with a static mixed layer ocean model. Simulated climates are obtained from each of two versions of the model: one with the land-ice distribution of the present and the other with that of 18 ka BP.In the northern hemisphere, the difference in the distribution of sea surface temperature (SST) between the two experiments resembles the difference between the SST at 18 ka BP and at present as estimated by CLIMAP Project Members (1981). In the northern hemisphere a substantial lowering of air temperature also occurs in winter, with a less pronounced cooling during summer. The mid-tropospheric flow field is influenced by the Laurentide ice sheet and features a split jet stream straddling the ice sheet and a long wave trough along the east coast of North America. In the southern hemisphere of 18 ka BP, the ice sheet has little influence on temperature. An examination of hemispheric heat balances indicates that this is because only a small change in interhemispheric heat transport exists, as the In situ radiative compensation in the northern hemisphere counterbalances the effective reflection of solar radiation by continental ice sheets.Hydrologic changes in the model climate are also found, with statistically significant decreases in soil moisture occurring in a zone located to the south of the ice sheets in North America and Eurasia. These findings are consistent with some geological evidence of regionally drier climates from the last glacial maximum.


2020 ◽  
Vol 13 (9) ◽  
pp. 4555-4577
Author(s):  
Ilkka S. O. Matero ◽  
Lauren J. Gregoire ◽  
Ruza F. Ivanovic

Abstract. Simulating the demise of the Laurentide Ice Sheet covering Hudson Bay in the Early Holocene (10–7 ka) is important for understanding the role of accelerated changes in ice sheet topography and melt in the 8.2 ka event, a century long cooling of the Northern Hemisphere by several degrees. Freshwater released from the ice sheet through a surface mass balance instability (known as the saddle collapse) has been suggested as a major forcing for the 8.2 ka event, but the temporal evolution of this pulse has not been constrained. Dynamical ice loss and marine interactions could have significantly accelerated the ice sheet demise, but simulating such processes requires computationally expensive models that are difficult to configure and are often impractical for simulating past ice sheets. Here, we developed an ice sheet model setup for studying the Laurentide Ice Sheet's Hudson Bay saddle collapse and the associated meltwater pulse in unprecedented detail using the BISICLES ice sheet model, an efficient marine ice sheet model of the latest generation which is capable of refinement to kilometre-scale resolutions and higher-order ice flow physics. The setup draws on previous efforts to model the deglaciation of the North American Ice Sheet for initialising the ice sheet temperature, recent ice sheet reconstructions for developing the topography of the region and ice sheet, and output from a general circulation model for a representation of the climatic forcing. The modelled deglaciation is in agreement with the reconstructed extent of the ice sheet, and the associated meltwater pulse has realistic timing. Furthermore, the peak magnitude of the modelled meltwater equivalent (0.07–0.13 Sv) is compatible with geological estimates of freshwater discharge through the Hudson Strait. The results demonstrate that while improved representations of the glacial dynamics and marine interactions are key for correctly simulating the pattern of Early Holocene ice sheet retreat, surface mass balance introduces by far the most uncertainty. The new model configuration presented here provides future opportunities to quantify the range of plausible amplitudes and durations of a Hudson Bay ice saddle collapse meltwater pulse and its role in forcing the 8.2 ka event.


2010 ◽  
Vol 11 (1) ◽  
pp. 3-25 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston ◽  
Christopher A. Hiemstra ◽  
Jens H. Christensen

Abstract Fluctuations in the Greenland ice sheet (GrIS) surface mass balance (SMB) and freshwater influx to the surrounding oceans closely follow climate fluctuations and are of considerable importance to the global eustatic sea level rise. A state-of-the-art snow-evolution modeling system (SnowModel) was used to simulate variations in the GrIS melt extent, surface water balance components, changes in SMB, and freshwater influx to the ocean. The simulations are based on the Intergovernmental Panel on Climate Change scenario A1B modeled by the HIRHAM4 regional climate model (RCM) using boundary conditions from the ECHAM5 atmosphere–ocean general circulation model (AOGCM) from 1950 through 2080. In situ meteorological station [Greenland Climate Network (GC-Net) and World Meteorological Organization (WMO) Danish Meteorological Institute (DMI)] observations from inside and outside the GrIS were used to validate and correct RCM output data before they were used as input for SnowModel. Satellite observations and independent SMB studies were used to validate the SnowModel output and confirm the model’s robustness. The authors simulated an ∼90% increase in end-of-summer surface melt extent (0.483 × 106 km2) from 1950 to 2080 and a melt index (above 2000-m elevation) increase of 138% (1.96 × 106 km2 × days). The greatest difference in melt extent occurred in the southern part of the GrIS, and the greatest changes in the number of melt days were seen in the eastern part of the GrIS (∼50%–70%) and were lowest in the west (∼20%–30%). The rate of SMB loss, largely tied to changes in ablation processes, leads to an enhanced average loss of 331 km3 from 1950 to 2080 and an average SMB level of −99 km3 for the period 2070–80. GrIS surface freshwater runoff yielded a eustatic rise in sea level from 0.8 ± 0.1 (1950–59) to 1.9 ± 0.1 mm (2070–80) sea level equivalent (SLE) yr−1. The accumulated GrIS freshwater runoff contribution from surface melting equaled 160-mm SLE from 1950 through 2080.


1996 ◽  
Vol 23 ◽  
pp. 167-173
Author(s):  
I. Marsiat

General Circulation Models (GCMs) will be more and more used for coupled climatic simulations involving ice sheets. It is therefore of prime importance to evaluate the performance of these models in simulating the mass balance and climate over ice sheets. The Antarctic climate simulated with the U.K. Universities Global Atmospheric Modelling Programme General Circulation Model (UGAMP GCM, hereafter referred to as the UGCM) is in good agreement with the available observations. In particular, the accumulation pattern appears fairly reasonable. Some imperfections are related to the surface temperature and energy budget but without severe consequences for the atmosphere behaviour. Refining the snow-related parameterizations could improve the results of the model in high latitudes.


2018 ◽  
Author(s):  
Constantijn J. Berends ◽  
Bas de Boer ◽  
Roderik S. W. van de Wal

Abstract. Fully coupled ice-sheet-climate modelling over 10,000–100,000-year time scales on high spatial and temporal resolution remains beyond the capability of current computational systems. Hybrid GCM-ice-sheet modelling offers a middle ground, balancing the need to accurately capture both long-term processes, in particular circulation driven changes in precipitation, and processes requiring a high spatial resolution like ablation. Here, we present and evaluate a model set-up that forces the ANICE 3D thermodynamic ice-sheet-shelf model calculating all ice on Earth, with pre-calculated output from several steady-state simulations with the HadCM3 general circulation model (GCM), using a so-called matrix method of coupling both components, where simulations with various levels of pCO2 and ice-sheet configuration are combined to form a time-continuous transient climate forcing consistent with the modelled ice-sheets. We address the difficulties in downscaling low-resolution GCM output to the higher-resolution grid of an ice-sheet model, and account for differences between GCM and ice-sheet model surface topography ranging from interglacial to glacial conditions. As a benchmark experiment to assess the validity of this model set-up, we perform a simulation of the entire last glacial cycle, from 120 kyr ago to present-day. The simulated eustatic sea-level drop at the Last Glacial maximum (LGM) for the combined Antarctic, Greenland, Eurasian and North-American ice-sheets amounts to 100 m, in line with many other studies. The simulated ice-sheets at LGM agree well with the ICE-5G reconstruction and the more recent DATED-1 reconstruction in terms of total volume and geographical location of the ice sheets. Moreover, modelled benthic oxygen isotope abundance and the relative contributions from global ice volume and deep-water temperature agree well with available data, as do surface temperature histories for the Greenland and Antarctic ice-sheets. This model strategy can be used to create time-continuous ice-sheet distribution and sea-level reconstructions for geological periods up to several millions of years in duration, capturing climate model driven variations in the mass balance of the ice sheet.


2014 ◽  
Vol 27 (13) ◽  
pp. 4835-4856 ◽  
Author(s):  
Richard I. Cullather ◽  
Sophie M. J. Nowicki ◽  
Bin Zhao ◽  
Max J. Suarez

Simulated surface conditions of the Goddard Earth Observing System model, version 5 (GEOS-5), atmospheric general circulation model (AGCM) are examined for the contemporary Greenland Ice Sheet (GrIS). A surface parameterization that explicitly models surface processes including snow compaction, meltwater percolation and refreezing, and surface albedo is found to remedy an erroneous deficit in the annual net surface energy flux and provide an adequate representation of surface mass balance (SMB) in an evaluation using simulations at two spatial resolutions. The simulated 1980–2008 GrIS SMB average is 24.7 ± 4.5 cm yr−1 water-equivalent (w.e.) at ½° model grid spacing, and 18.2 ± 3.3 cm yr−1 w.e. for 2° grid spacing. The spatial variability and seasonal cycle of the ½° simulation compare favorably to recent studies using regional climate models, while results from 2° integrations reproduce the primary features of the SMB field. In comparison to historical glaciological observations, the coarser-resolution model overestimates accumulation in the southern areas of the GrIS, while the overall SMB is underestimated. These changes relate to the sensitivity of accumulation and melt to the resolution of topography. The GEOS-5 SMB fields contrast with available corresponding atmospheric models simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is found that only a few of the CMIP5 AGCMs examined provide significant summertime runoff, a dominant feature of the GrIS seasonal cycle. This is a condition that will need to be remedied if potential contributions to future eustatic change from polar ice sheets are to be examined with GCMs.


2018 ◽  
Vol 11 (11) ◽  
pp. 4657-4675 ◽  
Author(s):  
Constantijn J. Berends ◽  
Bas de Boer ◽  
Roderik S. W. van de Wal

Abstract. Fully coupled ice-sheet–climate modelling over 10 000–100 000-year timescales at high spatial and temporal resolution remains beyond the capability of current computational systems. Forcing an ice-sheet model with precalculated output from a general circulation model (GCM) offers a middle ground, balancing the need to accurately capture both long-term processes, in particular circulation-driven changes in precipitation, and processes requiring a high spatial resolution like ablation. Here, we present and evaluate a model set-up that forces the ANICE 3-D thermodynamic ice-sheet–shelf model calculating the four large continental ice sheets (Antarctica, Greenland, North America, and Eurasia) with precalculated output from two steady-state simulations with the HadCM3 (GCM) using a so-called matrix method of coupling both components, whereby simulations with various levels of pCO2 and ice-sheet configuration are combined to form a time-continuous transient climate forcing consistent with the modelled ice sheets. We address the difficulties in downscaling low-resolution GCM output to the higher-resolution grid of an ice-sheet model and account for differences between GCM and ice-sheet model surface topography ranging from interglacial to glacial conditions. Although the approach presented here can be applied to a matrix with any number of GCM snapshots, we limited our experiments to a matrix of only two snapshots. As a benchmark experiment to assess the validity of this model set-up, we perform a simulation of the entire last glacial cycle from 120 kyr ago to present day. The simulated eustatic sea-level drop at the Last Glacial Maximum (LGM) for the combined Antarctic, Greenland, Eurasian, and North American ice sheets amounts to 100 m, in line with many other studies. The simulated ice sheets at the LGM agree well with the ICE-5G reconstruction and the more recent DATED-1 reconstruction in terms of total volume and geographical location of the ice sheets. Moreover, modelled benthic oxygen isotope abundance and the relative contributions from global ice volume and deep-water temperature agree well with available data, as do surface temperature histories for the Greenland and Antarctic ice sheets. This model strategy can be used to create time-continuous ice-sheet distribution and sea-level reconstructions for geological periods up to several million years in duration, capturing climate-model-driven variations in the mass balance of the ice sheet.


2012 ◽  
Vol 8 (1) ◽  
pp. 169-213 ◽  
Author(s):  
J. M. Gregory ◽  
O. J. H. Browne ◽  
A. J. Payne ◽  
J. K. Ridley ◽  
I. C. Rutt

Abstract. We have coupled the FAMOUS global AOGCM (atmosphere–ocean general circulation model) to the Glimmer thermomechanical ice-sheet model in order to study the development of ice-sheets in North-East America (Laurentia) and North-West Europe (Fennoscandia) following glacial inception. This first use of a coupled AOGCM-ice-sheet model for a study of change on long palæoclimate timescales is made possible by the low computational cost of FAMOUS, despite its inclusion of physical parameterisations of a similar complexity to those of higher-resolution AOGCMs. With the orbital forcing of 115 ka BP, FAMOUS-Glimmer produces ice-caps on the Canadian Arctic islands, on the north-west coast of Hudson Bay, and in Southern Scandinavia, which over 50 ka grow to occupy the Keewatin region of the Canadian mainland and all of Fennoscandia. Their growth is eventually halted by increasing coastal ice discharge. The expansion of the ice-sheets influences the regional climate, which becomes cooler, reducing the ablation, while precipitation increases. Ice accumulates in places that initially do not have positive surface mass balance. The results suggest the possibility that the Laurentide glaciation could have begun on the Canadian Arctic islands, producing a regional climate change that caused or enhanced the growth of ice on the mainland. The increase in albedo due to snow and ice cover is the dominant feedback on the area of the ice-sheets, and acts rapidly, whereas the feedback of topography on SMB does not become significant for several centuries, but eventually has a large effect on the thickening of the ice-sheets. These two positive feedbacks are mutually reinforcing. In addition the change in topography perturbs the tropospheric circulation, producing some reduction of cloud and mitigating the local cooling along the margin of the Laurentide ice-sheet. Our experiments demonstrate the importance and complexity of the interactions between ice-sheets and local climate.


Sign in / Sign up

Export Citation Format

Share Document