scholarly journals Melting over the East Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model

2017 ◽  
Author(s):  
Rajashree T. Datta ◽  
Marco Tedesco ◽  
Cecile Agosta ◽  
Xavier Fettweis ◽  
Peter Kuipers Munneke ◽  
...  

Abstract. Surface melting over the Antarctic Peninsula (AP) plays a crucial role for the stability of ice shelves and dynamics of grounded ice, hence modulating the mass balance in a region of the world which is particularly sensitive to increasing surface temperatures. Understanding the processes that drive melting using surface energy and mass balance models is fundamental to improving estimates of current and future surface melting and associated sea level rise through ice-shelf collapse. This is even more important in view of both the paucity of in-situ measurements in Antarctica generally and the specific challenges presented by the circulation patterns over the Antarctic Peninsula. In this study, we evaluate the regional climate model Modèle Atmosphérique Régionale (MAR) over the Antarctic Peninsula (AP) at a 10 km spatial resolution between 1999 and 2009, a period which coincides with the availability of active microwave data from the QuikSCAT mission. This is the first time that this model, which has been validated extensively over Greenland, has been applied to the Antarctic Peninsula at a high resolution. We compare melt occurrence modeled by MAR with a combination of estimates from passive and active microwave data. Our primary regional focus is the northern East Antarctic Peninsula (East AP), where we evaluate MAR against wind and temperature data collected by three automatic weather stations (AWS). Our results indicate that satellites estimates show greater melt frequency, a larger melt extent, and a quicker expansion to peak melt extent than MAR in the center and east of the Larsen C ice shelf. The difference between the remote sensing and modeled estimates reduces in the north and west of the East AP. Melting in the East AP can be initiated by both sporadic westerly föhn flow over the AP and northerly winds advecting warm air from lower latitudes. To quantify MAR's ability to simulate different circulation patterns that affect melt, we take a unique approach to evaluate melt occurrence (using satellite data) and concurrent temperature biases associated with specific wind direction biases using AWS data over the Larsen Ice Shelf. Our results indicate that although MAR shows an overall warm bias, it also shows fewer warm, strong westerly winds than reported by AWS stations, which may lead to an underestimation of melt. The underestimation of föhn flow in the east of the Larsen C may potentially be resolved by removing the hydrostatic assumption in MAR or increasing spatial resolution. The underestimation of southwesterly flow in particular may be reduced by using higher-resolution topography.

2018 ◽  
Vol 12 (9) ◽  
pp. 2901-2922 ◽  
Author(s):  
Rajashree Tri Datta ◽  
Marco Tedesco ◽  
Cecile Agosta ◽  
Xavier Fettweis ◽  
Peter Kuipers Munneke ◽  
...  

Abstract. Surface melting over the Antarctic Peninsula (AP) may impact the stability of ice shelves and thus the rate at which grounded ice is discharged into the ocean. Energy and mass balance models are needed to understand how climatic change and atmospheric circulation variability drive current and future melting. In this study, we evaluate the regional climate model MAR over the AP at a 10 km spatial resolution between 1999 and 2009, a period when active microwave data from the QuikSCAT mission is available. This model has been validated extensively over Greenland, has is applied here to the AP at a high resolution and for a relatively long time period (full outputs are available to 2014). We find that melting in the northeastern AP, the focus area of this study, can be initiated both by sporadic westerly föhn flow over the AP mountains and by northerly winds advecting warm air from lower latitudes. A comparison of MAR with satellite and automatic weather station (AWS) data reveals that satellite estimates show greater melt frequency, a larger melt extent, and a quicker expansion to peak melt extent than MAR in the centre and east of the Larsen C ice shelf. These differences are reduced in the north and west of the ice shelf, where the comparison with satellite data suggests that MAR is accurately capturing melt produced by warm westerly winds. MAR shows an overall warm bias and a cool bias at temperatures above 0 ∘C as well as fewer warm, strong westerly winds than reported by AWS stations located on the eastern edge of the Larsen C ice shelf, suggesting that the underestimation of melt in this region may be the product of limited eastward flow. At higher resolutions (5 km), MAR shows a further increase in wind biases and a decrease in meltwater production. We conclude that non-hydrostatic models at spatial resolutions better than 5 km are needed to better-resolve the effects of föhn winds on the eastern edges of the Larsen C ice shelf.


2021 ◽  
Author(s):  
Jonathan Wille ◽  
Vincent Favier ◽  
Nicolas Jourdain ◽  
Christoph Kittel ◽  
Jenny Turton ◽  
...  

Abstract The disintegration of the ice shelves along the Antarctic Peninsula have spurred much discussion on the various processes leading to their eventual dramatic collapse, but without a consensus on an atmospheric forcing that could connect these processes. Here, using an atmospheric river (AR) detection algorithm along with a regional climate model and satellite observations, we show that particularly intense ARs have a ~40% probability of inducing extreme events of temperature, surface melt, sea-ice disintegration, or large swells; all processes proven to induce ice-shelf destabilization. This was observed during the collapses of the Larsen A, B, and overall, 60% of calving events triggered by ARs from 2000-2020. The loss of the buttressing effect from these ice shelves leads to further continental ice loss and subsequent sea-level rise. Understanding how ARs connect various disparate processes cited in ice-shelf collapse theories is essential for identifying other at-risk ice shelves like the Larsen C.


2015 ◽  
Vol 9 (5) ◽  
pp. 4981-4995
Author(s):  
W. J. van de Berg ◽  
B. Medley

Abstract. The regional climate model RACMO2 has been a powerful tool for improving SMB estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice sheet integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for RCM simulations, although results in regions with steep topography should be treated with care.


2020 ◽  
Vol 37 (5) ◽  
pp. 477-493
Author(s):  
Deniz Bozkurt ◽  
David H. Bromwich ◽  
Jorge Carrasco ◽  
Keith M. Hines ◽  
Juan Carlos Maureira ◽  
...  

2021 ◽  
Author(s):  
Jeremy Carter ◽  
Amber Leeson ◽  
Andrew Orr ◽  
Christoph Kittel ◽  
Melchior van Wessem

<p>Understanding the surface climatology of the Antarctic ice sheet is essential if we are to adequately predict its response to future climate change. This includes both primary impacts such as increased ice melting and secondary impacts such as ice shelf collapse events. Given its size, and inhospitable environment, weather stations on Antarctica are sparse. Thus, we rely on regional climate models to 1) develop our understanding of how the climate of Antarctica varies in both time and space and 2) provide data to use as context for remote sensing studies and forcing for dynamical process models. Given that there are a number of different regional climate models available that explicitly simulate Antarctic climate, understanding inter- and intra model variability is important.</p><p>Here, inter- and intra-model variability in Antarctic-wide regional climate model output is assessed for: snowfall; rainfall; snowmelt and near-surface air temperature within a cloud-based virtual lab framework. State-of-the-art regional climate model runs from the Antarctic-CORDEX project using the RACMO, MAR and MetUM models are used, together with the ERA5 and ERA-Interim reanalyses products. Multiple simulations using the same model and domain boundary but run at either different spatial resolutions or with different driving data are used. Traditional analysis techniques are exploited and the question of potential added value from more modern and involved methods such as the use of Gaussian Processes is investigated. The advantages of using a virtual lab in a cloud based environment for increasing transparency and reproducibility, are demonstrated, with a view to ultimately make the code and methods used widely available for other research groups.</p>


Sign in / Sign up

Export Citation Format

Share Document