scholarly journals No role for industrial black carbon in forcing 19th century glacier retreat in the Alps

Author(s):  
Michael Sigl ◽  
Nerilie J. Abram ◽  
Jacopo Gabrieli ◽  
Theo M. Jenk ◽  
Dimitri Osmont ◽  
...  

Abstract. Light absorbing aerosols in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes radiative properties of these media, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of aerosols through time. Starting around 1860 AD, many glaciers in the European Alps began to retreat from their maximum mid-19th century terminus positions, thereby visualizing the end of the Little Ice Age in Europe. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps. Basis for this hypothesis were model simulations using elemental carbon concentrations at low temporal resolution from two ice cores in the Alps. Here we present sub-annually resolved, well-replicated concentration records of refractory black carbon (rBC; using soot photometry) as well as distinctive tracers for mineral dust, biomass burning and industrial pollution from the Colle Gnifetti ice core in the Alps from 1741–2015 AD. These records allow precise assessment of a potential relation between the timing of observed acceleration of glacier melt in the mid-19th century with an increase of rBC deposition on the glacier caused by the industrialization of Western Europe. Our study reveals that in 1875 AD, the time when European rBC emission rates started to significantly increase, the majority of Alpine glaciers had already experienced more than 80 % of their total 19th century length reduction. Industrial BC emissions can, therefore, not been considered as the primary forcing for the rapid deglaciation at the end of the Little Ice Age in the Alps. BC records from the Alps and Greenland also reveal the limitations of bottom-up emission inventories to represent a realistic evolution of anthropogenic BC emissions since preindustrial times.

2018 ◽  
Vol 12 (10) ◽  
pp. 3311-3331 ◽  
Author(s):  
Michael Sigl ◽  
Nerilie J. Abram ◽  
Jacopo Gabrieli ◽  
Theo M. Jenk ◽  
Dimitri Osmont ◽  
...  

Abstract. Light absorbing aerosols in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes the radiative properties of these systems, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of aerosols through time. Starting around AD 1860, many glaciers in the European Alps began to retreat from their maximum mid-19th century terminus positions, thereby visualizing the end of the Little Ice Age in Europe. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps. The basis for this hypothesis was model simulations using elemental carbon concentrations at low temporal resolution from two ice cores in the Alps. Here we present sub-annually resolved concentration records of refractory black carbon (rBC; using soot photometry) as well as distinctive tracers for mineral dust, biomass burning and industrial pollution from the Colle Gnifetti ice core in the Alps from AD 1741 to 2015. These records allow precise assessment of a potential relation between the timing of observed acceleration of glacier melt in the mid-19th century with an increase of rBC deposition on the glacier caused by the industrialization of Western Europe. Our study reveals that in AD 1875, the time when rBC ice-core concentrations started to significantly increase, the majority of Alpine glaciers had already experienced more than 80 % of their total 19th century length reduction, casting doubt on a leading role for soot in terminating of the Little Ice Age. Attribution of glacial retreat requires expansion of the spatial network and sampling density of high alpine ice cores to balance potential biasing effects arising from transport, deposition, and snow conservation in individual ice-core records.


2013 ◽  
Vol 110 (38) ◽  
pp. 15216-15221 ◽  
Author(s):  
T. H. Painter ◽  
M. G. Flanner ◽  
G. Kaser ◽  
B. Marzeion ◽  
R. A. VanCuren ◽  
...  
Keyword(s):  
Ice Age ◽  

2018 ◽  
Vol 44 (1) ◽  
pp. 115 ◽  
Author(s):  
H.J. Zumbühl ◽  
S.U. Nussbaumer

The Lower Grindelwald Glacier (Bernese Oberland, Switzerland) consists of two parts, the Ischmeer in the east (disconnected) and the Bernese Fiescher Glacier in the west. During the Little Ice Age (LIA), the glacier terminated either in the area of the “Schopffelsen” (landmark rock terraces) or advanced at least six times (ten times if we include early findings) even further down into the valley bottom forming the “Schweif” (tail). Maximal ice extensions were reached in 1602 and 1855/56 AD. The years after the end of the LIA have been dominated by a dramatic melting of ice, especially after 2000. The Mer de Glace (Mont Blanc area, France) is a compound valley glacier formed by the tributaries Glacier du Tacul, Glacier de Léschaux, and Glacier de Talèfre (disconnected). During the LIA, the Mer de Glace nearly continuously reached the plain in the Chamonix Valley (maximal extensions in 1644 and 1821 AD). The retreat, beginning in the mid-1850s, was followed by a relatively stable position of the front (1880s until 1930s). Afterwards the retreat has continued until today, especially impressive after 1995. The perception of glaciers in the early times was dominated by fear. In the age of Enlightenment and later in the 19th century, it changed to fascination. In the 20th century, glaciers became a top attraction of the Alps, but today they are disappearing from sight. With a huge number of high-quality pictorial documents, it is possible to reconstruct the LIA history of many glaciers in the European Alps from the 17th to the 19th centuries. Thanks to these pictures, we get an image of the beauty and fascination of LIA glaciers, ending down in the valleys. The pictorial documents (drawings, paintings, prints, photographs, and maps) of important artists (Caspar Wolf, Jean-Antoine Linck, Samuel Birmann) promoted a rapidly growing tourism. Compared with today’s situations, it gives totally different landscapes – a comparison of LIA images with the same views of today is probably the best visual proof for the changes in climate.


2017 ◽  
Author(s):  
Mauro Guglielmin ◽  
Marco Donatelli ◽  
Matteo Semplice ◽  
Stefano Serra Capizzano

Abstract. The general pattern of ground surface temperatures (GST) reconstructed from the permafrost Stelvio Share Borehole (SSB) for the last 500 years are similar to the mean annual air temperature (MAAT) reconstructions for the European Alps. The main difference with respect to MAAT reconstructions relates to post Little Ice Age (LIA) events. Between 1940 and 1989, SSB data indicate a 0.9 °C cooling. Subsequently, a rapid and abrupt GST warming (more than 0.8 °C per decade) was recorded between 1990 and 2011. This warming is of the same magnitude as the increase of MAAT between 1990 and 2000 recorded in central Europe and roughly double the MAAT in the Alps.


2018 ◽  
Vol 31 (22) ◽  
pp. 9413-9416
Author(s):  
Bjorn Stevens

This reply addresses a comment questioning one of the lines of evidence I used in a 2015 study (S15) to argue for a less negative aerosol radiative forcing. The comment raises four points of criticism. Two of these have been raised and addressed elsewhere; here I additionally show that even if they have merit the S15 lower bound remains substantially (0.5 W m–2) less negative than that given in the AR5. Regarding the two other points of criticism, one appears to be based on a poor understanding of the nature of S15’s argument; the other rests on speculation as to the nature of the uncertainty in historical SO2 estimates. In the spirit of finding possible flaws with the top-down constraints from S15, I instead hypothesize that an interesting—albeit unlikely—way S15 could be wrong is by inappropriately discounting the contribution of biomass burning to radiative forcing through aerosol–cloud interactions. This hypothesis is interesting as it opens the door for a role for the anthropogenic (biomass) aerosol in causing the Little Ice Age and again raises the specter of greater warming from ongoing reductions in SO2 emissions.


1996 ◽  
Vol 46 (1) ◽  
pp. 144-151
Author(s):  
Wolfgang Zech ◽  
Rupert Bäumler ◽  
Oksana Savoskul ◽  
Anatoli Ni ◽  
Maxim Petrov

Abstract. Soil geographic studies were carried out in the Oigaing valley between Ugamsky and Pskemsky range NE of Tashkent (W-Tienshan, Republic of Uzbekistan) with special regard to the Pleistocene and Holocene glaciation. Clear end moraines of the last main glaciation are preserved at the junction of Maidan and Oigaing river at 1500-1600 m a.s.l. They show intensively weathered soils with a depth of more than 80 cm. Similar deposits ol presumably Pleistocene or late glacial origin are also located upvalley at the embouchure of numerous side valleys (Beschtor, Tekesch, Aütor) into the main valley of Oigaing. All side valleys are characterized by late glacial ground and end moraines in 2500-2700 m a.s.l. showing intensively weathered brown colored soils of 30-40 cm depth. Further moraines of Holocene or recent origin are located approach of the recent glaciers which descend to 3000-3200 m. They show shallow, initial soils, and presumably correspond with glacial advances during the so-called "Little Ice Age" with a maximum advance at about 1850 in the Alps, and in the middle Holocene at about 2000 or 4000 a BP. Highly weathered, and rubefied interglacial soils developed from old Quaternary gravel are preserved above high glacial ice marginal grounds of the last main glaciation (>2850 m a.s.l.) in the lower side valley of the Barkrak river. In the upper valley huge drift could be shown above the ice marginal grounds, but without typical forms of morainic deposits. They give evidence for older glaciations with a greater extent compared with the last main glaciation. However, no corresponding moraines are present in the working area.


1996 ◽  
Vol 22 ◽  
pp. 181-186 ◽  
Author(s):  
W.B. Whalley ◽  
C.F. Palmer ◽  
S.J. Hamilton ◽  
D. Kitchen

The volume of debris in the left-lateral, Little Ice Age (LIA:AD1550–1850) moraine of the Feegletscher, Valais, Switzerland was compared with the actual volume being transported currently by the glacier. The latter is smaller by a factor of about two. In Tröllaskagi, north Iceland, a surface cover of debris on top of a very slow moving glacier ice mass (glacier noir, rock glacier) has been dated by lichenometry. The age of the oldest part is commensurate with LIA moraines in the area. Knowing the volume of debris of a given age allows an estimate of the debris supply to the glacier in a given time. Again, there appears to have been a significant reduction in debris to the glacier since the turn of the 19th century. Debris input in the early LIA seems to have been particularly copious and this may be important in the formation of some glacier depositional forms such as rock glaciers.


2018 ◽  
Vol 14 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Pascal Bohleber ◽  
Tobias Erhardt ◽  
Nicole Spaulding ◽  
Helene Hoffmann ◽  
Hubertus Fischer ◽  
...  

Abstract. Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a “Little Ice Age” cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100–1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.


2020 ◽  
Author(s):  
Jesús Alcalá Reygosa ◽  
Néstor Campos ◽  
Melaine Le Roy ◽  
Bijeesh Kozhikkodan Veettil ◽  
Adam Emmer

<p>The Little Ice Age (LIA) occurred between CE 1250 and 1850 and is considered a period of moderate cold conditions, especially recorded in the northern hemisphere. Numerous recent studies provide robust evidence of glacier advances worldwide during the LIA and a dramatic retreat since then. These studies combined investigation of moraine records, paintings, topographical and glaciological measurements as well as multitemporal aerial and terrestrial photographs and satellite images. For instance, post-LIA glaciers retreat amounts ~60 % in the Alps (Paul et al., 2020), ~88 % in the Pyrenees (Rico et al., 2016) and 89 % in the Bolivian Andes (Ramírez et al., 2001). However, there is scarce knowledge in Mexico about the glacier changes since the LIA. The reconstructions are limited to the Iztaccíhualt volcano where Schneider et al. (2008) established a glacier retreat of 95 %.</p><p>Here, we reconstruct the glacier evolution since the LIA to CE 2015 of the Mexican highest ice-capped volcano: Pico de Orizaba (19° 01´ N, 97° 16´W, 5,675 m a.s.l.). Due to Pico de Orizaba is in the outer Tropic, the most plausible scenario is a glacier evolution similar to the Bolivian Andes and especially to the Iztaccíhualt volcano. To carry out this research, we mapped the glacier area during the LIA, based on moraine record, and the area during 1945, 1958, 1971, 1988, 1994, 2003 and 2015 using a previous map elaborated by Palacios and Vázquez-Selem (1996), aerial orthophotographs and satellite images. The geographical mapping and the calculus of area, minimum altitude and volume of the glacier were generated with the software ArcGIS 10.2.2. The results show that glacier area retreated 92% between the LIA (8.8 km<sup>2</sup>) and 2015 (0.67 km<sup>2</sup>), being a drastic glacier loss in agreement with the Bolivian Andes and Iztaccíhualt. Therefore, mexican glaciers have experienced the major shrunk since LIA that implies a highly sensitive reaction to global warming.</p><p>This research was supported by the Project UNAM-DGAPA-PAPIIT grant IA105318.</p><p>References</p><p>Palacios, D., Vázquez-Selem, L. 1996. Geomorphic effects of the retreat of Jamapa glacier, Pico de Orizaba volcano (Mexico). Geografiska Annaler, Series A, Physical Geography 78, 19-34.</p><p>Paul F., Rastner P., Azzoni R.S., Diolaiuti G., Fugazza D., Le Bris R., Nemec J., Rabatel A., Ramusovic M., Schwaizer G., and Smiraglia C. 2020. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2 https://doi.org/10.5194/essd-2019-213.</p><p>Ramírez, E., Francou, B., Ribstein, P., Descloitres, M., Guérin, R., Mendoza, J., Gallaire, R., Pouyaud, B., Jordan, E. 2001. Small glaciers disappearing in the tropical Andes: a case study in Bolivia: Glaciar Chacaltaya (16° S). Journal of Glaciology 47 (157), 187-194.</p><p>Rico I., Izagirre E., Serrano E., López-Moreno J.I., 2016. Current glacier area in the Pyrenees : an updated assessment 2016. Pirineos 172, doi: http://dx.doi.org/10.3989/Pirineos.2017.172004.</p><p>Schneider, D., Delgado-Granados, H., Huggel, C., Kääb, A. 2008. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico). Natural Hazards and Earth System Sciences 8, 559-571.</p><p> </p><p> </p>


2007 ◽  
Vol 46 ◽  
pp. 362-366 ◽  
Author(s):  
Tandong Yao ◽  
Keqin Duan ◽  
L.G. Thompson ◽  
Ninglian Wang ◽  
Lide Tian ◽  
...  

AbstractTemperature variation on the Tibetan Plateau over the last 1000 years has been inferred using a composite δ18O record from four ice cores. Data from a new ice core recovered from the Puruogangri ice field in the central Tibetan Plateau are combined with those from three other cores (Dunde, Guliya and Dasuopu) recovered previously. The ice-core δ18O composite record indicates that the temperature change on the whole Tibetan Plateau is similar to that in the Northern Hemisphere on multi-decadal timescales except that there is no decreasing trend from AD 1000 to the late 19th century. The δ18O composite record from the northern Tibetan Plateau, however, indicates a cooling trend from AD 1000 to the late 19th century, which is more consistent with the Northern Hemisphere temperature reconstruction. The δ18O composite record reveals the existence of the Medieval Warm Period and the Little Ice Age (LIA) on the Tibetan Plateau. However, on the Tibetan Plateau the LIA is not the coldest period during the last millennium as in other regions in the Northern Hemisphere. The present study indicates that the 20th-century warming on the Tibetan Plateau is abrupt, and is warmer than at any time during the past 1000 years.


Sign in / Sign up

Export Citation Format

Share Document