scholarly journals Bodengeographische Beobachtungen zur pleistozänen und holozänen Vergletscherung des Westlichen Tienshan (Usbekistan)

1996 ◽  
Vol 46 (1) ◽  
pp. 144-151
Author(s):  
Wolfgang Zech ◽  
Rupert Bäumler ◽  
Oksana Savoskul ◽  
Anatoli Ni ◽  
Maxim Petrov

Abstract. Soil geographic studies were carried out in the Oigaing valley between Ugamsky and Pskemsky range NE of Tashkent (W-Tienshan, Republic of Uzbekistan) with special regard to the Pleistocene and Holocene glaciation. Clear end moraines of the last main glaciation are preserved at the junction of Maidan and Oigaing river at 1500-1600 m a.s.l. They show intensively weathered soils with a depth of more than 80 cm. Similar deposits ol presumably Pleistocene or late glacial origin are also located upvalley at the embouchure of numerous side valleys (Beschtor, Tekesch, Aütor) into the main valley of Oigaing. All side valleys are characterized by late glacial ground and end moraines in 2500-2700 m a.s.l. showing intensively weathered brown colored soils of 30-40 cm depth. Further moraines of Holocene or recent origin are located approach of the recent glaciers which descend to 3000-3200 m. They show shallow, initial soils, and presumably correspond with glacial advances during the so-called "Little Ice Age" with a maximum advance at about 1850 in the Alps, and in the middle Holocene at about 2000 or 4000 a BP. Highly weathered, and rubefied interglacial soils developed from old Quaternary gravel are preserved above high glacial ice marginal grounds of the last main glaciation (>2850 m a.s.l.) in the lower side valley of the Barkrak river. In the upper valley huge drift could be shown above the ice marginal grounds, but without typical forms of morainic deposits. They give evidence for older glaciations with a greater extent compared with the last main glaciation. However, no corresponding moraines are present in the working area.

1996 ◽  
Vol 40 (4) ◽  
pp. 447-460
Author(s):  
William C. Mahaney ◽  
K. Sanmugadas ◽  
R. G. V. Hancock

The Holocene ◽  
2014 ◽  
Vol 24 (11) ◽  
pp. 1439-1452 ◽  
Author(s):  
José M García-Ruiz ◽  
David Palacios ◽  
Nuria de Andrés ◽  
Blas L Valero-Garcés ◽  
Juan I López-Moreno ◽  
...  

The Marboré Cirque, which is located in the southern Central Pyrenees on the north face of the Monte Perdido Peak (42°40′0″N; 0.5°0″W; 3355 m), contains a wide variety of Holocene glacial and periglacial deposits, and those from the ‘Little Ice Age’ (‘LIA’) are particularly well developed. Based on geomorphological mapping, cosmogenic exposure dating and previous studies of lacustrine sediment cores, the different deposits were dated and a sequence of geomorphological and paleoenvironmental events was established as follows: (1) The Marboré Cirque was at least partially deglaciated before 12.7 kyr BP. (2) Some ice masses are likely to have persisted in the Early Holocene, although their moraines were destroyed by the advance of glaciers during the Mid Holocene and ‘LIA’. (3) A glacial expansion occurred during the Mid Holocene (5.1 ± 0.1 kyr), represented by a large push moraine that enclosed a unique ice mass at the foot of the Monte Perdido Massif. (4) A melting phase occurred at approximately 3.4 ± 0.2 and 2.5 ± 0.1 kyr (Bronze/Iron Ages) after one of the most important glacial advances of the Neoglacial period. (5) Another glacial expansion occurred during the Dark Age Cold Period (1.4–1.2 kyr), followed by a melting period during the Medieval Climate Anomaly. (6) The ‘LIA’ represented a clear stage of glacial expansion within the Marboré Cirque. Two different pulses of glaciation were detected, separated by a short retraction. The first pulse occurred most likely during the late 17th century or early 18th century (Maunder Minimum), whereas the second occurred between 1790 and ad 1830 (Dalton Minimum). A strong deglaciation process has affected the Marboré Cirque glaciers since the middle of the 19th century. (7) A large rock avalanche occurred during the Mid Holocene, leaving a chaotic deposit that was previously considered to be a Late Glacial moraine.


2020 ◽  
Author(s):  
Jesús Alcalá Reygosa ◽  
Néstor Campos ◽  
Melaine Le Roy ◽  
Bijeesh Kozhikkodan Veettil ◽  
Adam Emmer

<p>The Little Ice Age (LIA) occurred between CE 1250 and 1850 and is considered a period of moderate cold conditions, especially recorded in the northern hemisphere. Numerous recent studies provide robust evidence of glacier advances worldwide during the LIA and a dramatic retreat since then. These studies combined investigation of moraine records, paintings, topographical and glaciological measurements as well as multitemporal aerial and terrestrial photographs and satellite images. For instance, post-LIA glaciers retreat amounts ~60 % in the Alps (Paul et al., 2020), ~88 % in the Pyrenees (Rico et al., 2016) and 89 % in the Bolivian Andes (Ramírez et al., 2001). However, there is scarce knowledge in Mexico about the glacier changes since the LIA. The reconstructions are limited to the Iztaccíhualt volcano where Schneider et al. (2008) established a glacier retreat of 95 %.</p><p>Here, we reconstruct the glacier evolution since the LIA to CE 2015 of the Mexican highest ice-capped volcano: Pico de Orizaba (19° 01´ N, 97° 16´W, 5,675 m a.s.l.). Due to Pico de Orizaba is in the outer Tropic, the most plausible scenario is a glacier evolution similar to the Bolivian Andes and especially to the Iztaccíhualt volcano. To carry out this research, we mapped the glacier area during the LIA, based on moraine record, and the area during 1945, 1958, 1971, 1988, 1994, 2003 and 2015 using a previous map elaborated by Palacios and Vázquez-Selem (1996), aerial orthophotographs and satellite images. The geographical mapping and the calculus of area, minimum altitude and volume of the glacier were generated with the software ArcGIS 10.2.2. The results show that glacier area retreated 92% between the LIA (8.8 km<sup>2</sup>) and 2015 (0.67 km<sup>2</sup>), being a drastic glacier loss in agreement with the Bolivian Andes and Iztaccíhualt. Therefore, mexican glaciers have experienced the major shrunk since LIA that implies a highly sensitive reaction to global warming.</p><p>This research was supported by the Project UNAM-DGAPA-PAPIIT grant IA105318.</p><p>References</p><p>Palacios, D., Vázquez-Selem, L. 1996. Geomorphic effects of the retreat of Jamapa glacier, Pico de Orizaba volcano (Mexico). Geografiska Annaler, Series A, Physical Geography 78, 19-34.</p><p>Paul F., Rastner P., Azzoni R.S., Diolaiuti G., Fugazza D., Le Bris R., Nemec J., Rabatel A., Ramusovic M., Schwaizer G., and Smiraglia C. 2020. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2 https://doi.org/10.5194/essd-2019-213.</p><p>Ramírez, E., Francou, B., Ribstein, P., Descloitres, M., Guérin, R., Mendoza, J., Gallaire, R., Pouyaud, B., Jordan, E. 2001. Small glaciers disappearing in the tropical Andes: a case study in Bolivia: Glaciar Chacaltaya (16° S). Journal of Glaciology 47 (157), 187-194.</p><p>Rico I., Izagirre E., Serrano E., López-Moreno J.I., 2016. Current glacier area in the Pyrenees : an updated assessment 2016. Pirineos 172, doi: http://dx.doi.org/10.3989/Pirineos.2017.172004.</p><p>Schneider, D., Delgado-Granados, H., Huggel, C., Kääb, A. 2008. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico). Natural Hazards and Earth System Sciences 8, 559-571.</p><p> </p><p> </p>


Polar Record ◽  
2008 ◽  
Vol 44 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Naja Mikkelsen ◽  
Antoon Kuijpers ◽  
Jette Arneborg

ABSTRACTNorse immigrants from Europe settled in southern Greenland in around AD 985 and managed to create a farming community during the Medieval Warm Period. The Norse vanished after approximately 500 years of existence in Greenland leaving no documentary evidence concerning why their culture foundered. The flooding of fertile grassland caused by late Holocene sea-level changes may be one of the factors that affected the Norse community. Holocene sea-level changes in Greenland are closely connected with the isostatic response of the Earth's crust to the behaviour of the Greenlandic ice sheet. An early Holocene regressive phase in south and west Greenland was reversed during the middle Holocene, and evidence is found for transgression and drowning of early-middle Holocene coast lines. This drowning started between 8 and 7ka BP in southern Greenland and continued during the Norse era to the present. An average late Holocene sea level rise in the order of 2–3 m/1000 years may be one of the factors that negatively affected the life of the Norse Greenlanders, and combined with other both socio-economic and environmental problems, such as increasing wind and sea ice expansion at the transition to the Little Ice Age, may eventually have led to the end of the Norse culture in Greenland.


1984 ◽  
Vol 21 (3) ◽  
pp. 275-285 ◽  
Author(s):  
H.E. Wright

Small ice fields on the western cordillera northeast of Lima were expanded to three times their present size in the recent past, and the regional snow line was probably about 100 m lower than it is today. Outwash from the expanded glaciers formed deltas of silt in valley-bottom lakes. When the ice lobes retreated, the reduced outwash was trapped behind recessional moraines, and the clear meltwater infiltrated into the limestone bedrock and emerged at the heads of the deltas in spring pools. The delta surfaces then became covered with peat, and radiocarbon dates for the base of the peat (1100 ± 70 and 430 ± 70 yr B.P. for two different deltas) indicate that the maximum ice advance was older than those dates and, thus, older than the Little Ice Age of many north-temperate regions. Much older moraines date from expansion of the same local summit glaciers to even lower levels in the main valleys, which had previously been inundated by the cordilleran ice field. The cordilleran deglaciation and this expansion of local glaciers probably occurred between 12,000 and 10,000 yr ago, on the basis of slightly contradictory radiocarbon dates.


2021 ◽  
Author(s):  
Benjamin Bell ◽  
Philip Hughes ◽  
William Fletcher ◽  
Roger Braithwaite ◽  
Henk Cornelissen ◽  
...  

<p>Pleistocene glaciers were extensive in the Marrakech High Atlas, Morocco. Today, semi-permanent snowpatches survive in topoclimatic settings and there is evidence of niche glaciers as recently as the Little Ice Age and early 20<sup>th</sup> Century. However, little is known about the state of permanent snow and niche glaciers through the Holocene. One hypothesis is that Little Ice Age glaciers were the largest snow and ice masses since the end of the Late-glacial (Younger Dryas 12.9-11.7 ka). Another possibility is that snow and ice expanded to similar or greater extents at other points in the Holocene.</p><p>To test these hypotheses, moraine boulders have been sampled on moraine successions in the highest parts of the High Atlas, including moraine successions in front of the névé permanent below the north-facing cliffs of Tazaghart (3890 m a.s.l.), a semi-permanent snowpatch that survives many summers today. This site is bounded by prominent moraine ridges with no soil development and no lichens on surface boulders. Several other high-level sites have been targeted and over 40 samples are currently being processed for <sup>10</sup>Be and <sup>36</sup>Cl exposure dating. Establishing the relative difference in extent and altitude of Late-glacial and the most recent glaciers in the High Atlas is important for understanding landscape and climate evolution in high mountain areas in the subtropics (31ºN).</p><p>The dated geomorphological records for late-lying snow and glaciers will be compared to high-resolution <sup>14</sup>C dated continuous parasequences from sediment cores from marshes at the Yagour Plateau and Oukaïmeden, both high-level sites in the High Atlas (~2700 m a.s.l.). The proximity of these sites (5-30 km, respectively) from the snowpatch/glacier sites will provide an important independent record of environmental change, spanning the Late-glacial and Holocene. This geomorphological record of former glaciers and snowpatches (moraines and pronival ramparts) is inherently fragmentary in time and the continuous core records from these alpine marshes will provide crucial insights into changing moisture conditions over time, which at these altitudes are closely related to the extent and volume of snowpack.</p><p>The climates associated with perennial snow cover and niche glaciers, and the associated annual snowpack melt, will be quantified using degree-day modelling. This allows melt rates to be predicted and this can be compared against observed modern climate in the High Atlas region. This involves interrogation of existing meteorological datasets from across the High Atlas and the development of algorithms for interpolation and extrapolation to ungauged higher altitudes.</p><p>Changes in the nature of the cryosphere through time in the High Atlas Mountains is crucial for understanding human activity and socioeconomic development in the wider region. Today, snowmelt from the High Atlas represents the most important ground water recharge used for a wide variety of purposes. Understanding changes in snow conditions, and as a consequence the behaviour of niche glaciers, in the High Atlas through the Holocene has important implications not only for water supply for humans but also for biological refugia and the evolution of cold-adapted flora and fauna.</p>


1999 ◽  
Vol 28 ◽  
pp. 141-145 ◽  
Author(s):  
Rudolf Sailer ◽  
Hanns Kerschner

AbstractThree cirques in the Ferwall group, western Tyrol, Austria, which are characterized by distinct Late-glacial moraines and rock glaciers, are discussed. The morphology of the moraines and the depression of the equilibrium-line altitude suggest they were deposited during the Egesen Stadial (Younger Dryas), which can be subdivided into three substages. Rock-glacier formation was initialized during or after the Egesen II substage. They became inactive at the Pleistocene—Holocene transition. ELA values are 290–320 m lower than the Little Ice Age ELA during the Egesen I substage, 190–230 m lower during the Egesen II substage and 120 —160 m lower during the Egesen III substage. The lowering of the rock-glacier belt (discontinuous permafrost) during and after the Egesen II substage is about 400 m, indicating a mean annual air-temperature depression in the order of 3 K. During the Egesen I (earlyYounger Dryas), the climate seems to have been rather cold and wet with precipitation similar to present-day values. During later phases (Egesen II and III), the climate remained cold and became increasingly drier. The rise of the ELA during the Egesen I—III substages seems to have been mainly caused by a decrease in precipitation.


Author(s):  
Michael Jochim

The environmental changes in Europe at the end of the last ice age had profound effects on human populations. One of these changes, the development of numerous lakes in the region north of the Alps, created new habitats and niches that were rapidly exploited, with significant effects on many aspects of behavior. The record of environmental and archaeological changes in southern Germany and Switzerland are examined with an emphasis on some of the implications of the resulting change in settlement patterns.


2021 ◽  
Vol 40 (3) ◽  
pp. 85-102
Author(s):  
N.G. Razjigaeva ◽  
◽  
T.A. Grebennikova ◽  
L.A. Ganzey ◽  
V.V. Chakov ◽  
...  

Continued record of paleogeographic events in the Shantar islands since the end of the Pleistocene was restored on the basis of a multy-proxy study of the stratigraphy of the blanket peatland. Biostratigraphical studies included botanical, diatom and pollen analyses. The age-depth model was built using 7 radiocarbon dates. For the first time, data of the environment development were obtained for the coldest part of the Sea of Okhotsk. Synchronicity and metachronicity of paleoclimatic events with regional data and global changes have been established. The Younger Dryas on the Shantar islands was much colder than in other areas around the Sea of Okhotsk. The climate became more maritime after the isolation of the islands at the early-middle Holocene. The influence of the cold sea and the presence of drifting ice were one of the main factors, why the early and middle Holocene optimums were poorly manifested here, and also determined the specifics of climatic rhythm. Models explaining alternation of relatively warm and cold periods with different humidity are proposed. The age of periods with heavy snowfalls has been established, as evidenced by the change in the role of shrub pine in island vegetation. Phases of development of local swamp and zonal landscapes are highlighted. Spruce appeared on the area ~11410–10345 cal. yr. BP, when there was a landbridge, and spruce trees became common in the middle Holocene and especially at the boundary of the middle-late Holocene. One of the controlling factors for the development of swamp landscapes was thermokarst processes. Significant changes in the environment occurred in the Little Ice Age, the most severe conditions were ~500–260 cal. yr. BP. In the last 210 years, the most significant changes in landscapes have been associated with anthropogenic fires.


2020 ◽  
Vol 16 (6) ◽  
pp. 2343-2358
Author(s):  
Martin Bauch ◽  
Thomas Labbé ◽  
Annabell Engel ◽  
Patric Seifert

Abstract. The cold/wet anomaly of the 1310s (“Dantean Anomaly”) has attracted a lot of attention from scholars, as it is commonly interpreted as a signal of the transition between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The huge variability that can be observed during this decade, like the high interannual variability observed in the 1340s, has been highlighted as a side effect of this rapid climatic transition. In this paper, we demonstrate that a multi-seasonal drought of almost 2 years occurred in the Mediterranean between 1302 and 1304, followed by a series of hot, dry summers north of the Alps from 1304 to 1306. We suggest that this outstanding dry anomaly, unique in the 13th and 14th centuries, together with cold anomalies of the 1310s and the 1340s, is part of the climatic shift from the MCA to the LIA. Our reconstruction of the predominant weather patterns of the first decade of the 14th century – based on both documentary and proxy data – identifies multiple European precipitation seesaw events between 1302 and 1307, with similarities to the seesaw conditions which prevailed over continental Europe in 2018. It can be debated to what extent the 1302–1307 period can be compared to what is currently discussed regarding the influence of the phenomenon of Arctic amplification on the increasing frequency of persistent stable weather patterns that have occurred since the late 1980s. Additionally, this paper deals with socioeconomic and cultural responses to drought risks in the Middle Ages as outlined in contemporary sources and provides evidence that there is a significant correlation between pronounced dry seasons and fires that devastated cities.


Sign in / Sign up

Export Citation Format

Share Document