scholarly journals Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland

2020 ◽  
Author(s):  
Nathan Maier ◽  
Florent Gimbert ◽  
Fabien Gillet-Chaulet ◽  
Adrien Gilbert

Abstract. On glaciers and ice sheets, identifying the relationship between velocity and traction is critical to constrain the bed physics that control ice flow. Yet in Greenland, these relationships remain unquantified. We determine the spatial relationship between velocity and traction in all eight drainage catchments of Greenland. The basal traction is estimated using three different methods over large grid cells to minimize interpretation biases associated with unconstrained rheologic parameters used in numerical inversions. We find the relationships are consistent with our current understanding of basal physics in each catchment. We identify catchments that predominantly show Mohr-Coulomb-like behavior typical of deforming beds or significant cavitation, as well as catchments that predominantly show rate-strengthening behavior typical of Weertman-type hard-bed physics. Overall, the traction relationships suggest that the flow field and surface geometry over the grounded regions of the Greenland ice sheet is mainly dictated by Weertman-type hard-bed physics. Given the complex basal boundary across Greenland, the relationships are captured surprisingly well by simple traction laws over the entire velocity range, including regions with velocities over 1000 m/yr, which provide a parameterization that can be used to model ice dynamics at large scales. The results and analysis serve as a fundamental constraint on the physics of basal motion in Greenland and provide unique insight into future dynamics and vulnerabilities in a warming climate.

2021 ◽  
Vol 15 (3) ◽  
pp. 1435-1451
Author(s):  
Nathan Maier ◽  
Florent Gimbert ◽  
Fabien Gillet-Chaulet ◽  
Adrien Gilbert

Abstract. On glaciers and ice sheets, identifying the relationship between velocity and traction is critical to constrain the bed physics that controls ice flow. Yet in Greenland, these relationships remain unquantified. We determine the spatial relationship between velocity and traction in all eight major drainage catchments of Greenland. The basal traction is estimated using three different methods over large grid cells to minimize interpretation biases associated with unconstrained rheologic parameters used in numerical inversions. We find the relationships are consistent with our current understanding of basal physics in each catchment. We identify catchments that predominantly show Mohr–Coulomb-like behavior typical of deforming beds or significant cavitation, as well as catchments that predominantly show rate-strengthening behavior typical of Weertman-type hard-bed physics. Overall, the traction relationships suggest that the flow field and surface geometry of the grounded regions in Greenland is mainly dictated by Weertman-type hard-bed physics up to velocities of approximately 450 m yr−1, except within the Northeast Greenland Ice Stream and areas near floatation. Depending on the catchment, behavior of the fastest-flowing ice (∼ 1000 m yr−1) directly inland from marine-terminating outlets exhibits Weertman-type rate strengthening, Mohr–Coulomb-like behavior, or is not confidently resolved given our methodology. Given the complex basal boundary across Greenland, the relationships are captured reasonably well by simple traction laws which provide a parameterization that can be used to model ice dynamics at large scales. The results and analysis serve as a first constraint on the physics of basal motion over the grounded regions of Greenland and provide unique insight into future dynamics and vulnerabilities in a warming climate.


2021 ◽  
Author(s):  
Nathan Maier ◽  
Florent Gimbert ◽  
Fabien Gillet-Chaulet ◽  
Adrien Gilbert

<p>On glaciers and ice sheets, constraints on the bed physics which control the relationship between velocity and traction are critical for simulating ice flow. However, in Greenland the relationship between velocity and traction remains unquantified over much of the ice sheet. In this work, we determine the spatial relationship between velocity and traction in all eight drainage catchments of Greenland. The basal traction is estimated using three different methods over large grid cells to minimize biases associated with unconstrained rheologic parameters used in numerical inversions. We find that the velocity-traction relationships are consistent with our current understanding of basal physics in each catchment. We identify catchments that predominantly show Mohr-Coulomb-like behavior typical of deforming beds or significant cavitation, as well as catchments that predominantly show rate-strengthening behavior typical of Weertman-type hard-bed physics. Overall, the velocity-traction relationships suggest that the flow field and surface geometries over the grounded regions of the Greenland ice sheet are mainly dictated by Weertman-type physics. This data- and modeling based analysis provides a first constraint on the physics of basal motion over the grounded regions of Greenland and gives unique insight into future dynamics and vulnerabilities in a warming climate.</p>


2020 ◽  
Author(s):  
Stephen Brough ◽  
James Lea

<p>The drainage of supraglacial lakes provides a fundamental mechanism for the rapid transfer of surface meltwater to the bed of an ice sheet, impacting both subglacial hydrology and ice dynamics. As a consequence, it is crucial to understand where and when these lakes drain, and how or if this has changed through time. Given that lakes are now occurring in greater numbers and at higher elevations, identifying changing modes in behaviour will have significant implications for the future dynamics of the Greenland ice sheet. Nevertheless, previous studies of supraglacial lakes and associated drainage events have been limited in spatial and/or temporal scale relative to the entire ice sheet.</p><p>Here we use daily maps of Greenland wide supraglacial lake coverage – derived from MODIS Terra within Google Earth Engine – to investigate the style, pattern and timing of lake drainages between 2000 and 2019. Results from this study: i) add to the understanding of how supraglacial hydrology and its coupling to the bed has changed in response to more extensive supraglacial lake cover over the last 20 years; and ii) provide insight into how these lakes and associated drainage events can be expected to respond to increased surface meltwater production under a warming climate.</p>


2021 ◽  
Author(s):  
Alexander Robinson ◽  
Daniel Goldberg ◽  
William H. Lipscomb

Abstract. In the last decade, the number of ice-sheet models has increased substantially, in line with the growth of the glaciological community. These models use solvers based on different approximations of ice dynamics. In particular, several depth-integrated dynamics approximations have emerged as fast solvers capable of resolving the relevant physics of ice sheets at the continen- tal scale. However, the numerical stability of these schemes has not been studied systematically to evaluate their effectiveness in practice. Here we focus on three such solvers, the so-called Hybrid, L1L2-SIA and DIVA solvers, as well as the well-known SIA and SSA solvers as boundary cases. We investigate the numerical stability of these solvers as a function of grid resolution and the state of the ice sheet. Under simplified conditions with constant viscosity, the maximum stable timestep of the Hybrid solver, like the SIA solver, has a quadratic dependence on grid resolution. In contrast, the DIVA solver has a maximum timestep that is independent of resolution, like the SSA solver. Analysis indicates that the L1L2-SIA solver should behave similarly, but in practice, the complexity of its implementation can make it difficult to maintain stability. In realistic simulations of the Greenland ice sheet with a non-linear rheology, the DIVA and SSA solvers maintain superior numerical stability, while the SIA, Hybrid and L1L2-SIA solvers show markedly poorer performance. At a grid resolution of ∆x = 4 km, the DIVA solver runs approximately 15 times faster than the Hybrid and L1L2-SIA solvers. Our analysis shows that as resolution increases, the ice-dynamics solver can act as a bottleneck to model performance. The DIVA solver emerges as a clear outlier in terms of both model performance and its representation of the ice-flow physics itself.


2021 ◽  
Author(s):  
Leif S. Anderson ◽  
William H. Armstrong ◽  
Robert S. Anderson ◽  
Dirk Scherler

<p>Many glaciers in High Mountain Asia are experiencing the debris-cover anomaly. The Kennicott Glacier, a large Alaskan Glacier, is also thinning most rapidly under debris cover. This contradiction has been explained by melt hotspots, such as ice cliffs, streams, or ponds scattered within the debris cover or by declining ice flow in time. We collected abundant in situ measurements of debris thickness, sub-debris melt, and ice cliff backwasting, allowing for extrapolation across the debris-covered tongue. A newly developed automatic ice cliff delineation method is the first to use only optical satellite imagery. The adaptive binary threshold method accurately estimates ice cliff coverage even where ice cliffs are small and debris color varies. We also develop additional remotely-sensed datasets of ice dynamical variables, other melt hot spots, and glacier thinning.</p><p>Kennicott Glacier exhibits the highest fractional area of ice cliffs (11.7 %) documented to date. Ice cliffs contribute 26 % of total melt across the glacier tongue. Although the <em>relative</em> importance of ice cliffs to area-average melt is significant, the<em> absolute</em> area-averaged melt is dominated by debris. At Kennicott Glacier, glacier-wide melt rates are not maximized in the zone of maximum thinning. Declining ice discharge through time therefore explains the rapid thinning. Through this study, Kennicott Glacier is the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.</p><p>We also carefully explore the relationship between debris, melt hotspots, ice dynamics, and thinning across the debris-covered tongue. In doing so we reveal a chain of linked processes that can explain the striking patterns expressed on the debris-covered tongue of Kennicott Glacier.</p>


2020 ◽  
Author(s):  
Jan Wuite ◽  
Thomas Nagler ◽  
Markus Hetzenecker ◽  
Lars Keuris ◽  
Ludivine Libert ◽  
...  

<p>Recent years have seen major advancements in satellite Earth observation of polar land ice. Among the most notable are the developments enabled by the Copernicus Sentinel program, including the Sentinel-1 SAR mission. The Sentinel-1 constellation, with its dedicated polar acquisition scheme, has provided the opportunity to derive ice flow velocity of the Greenland and Antarctic ice sheets at an unprecedented scale and temporal sampling. A continuous observational record of the ice sheet margins since October 2014, augmented by dedicated ice sheet wide mapping campaigns, enabled the operational monitoring of key climate variables like ice velocity and glacier discharge. In 2019 additional tracks have been added to the regular acquisition scheme, covering the slow-moving interior of the Greenland Ice Sheet, opening up new opportunities for interferometric applications and permitting to derive monthly ice sheet wide velocity maps. </p><p><br>Based on repeat pass Sentinel-1 SAR data, acquired in Interferometric Wide (IW) swath mode, we have generated a dense archive of ice velocity maps covering the polar regions and encompassing the entire mission duration, now spanning well over 5 years. Including the latest observational data, we present ice velocity maps of Greenland, Antarctica and other major ice caps, focusing on time series of ice flow fluctuations of major outlet glaciers. The ice velocity maps, complemented by high resolution DEMs and ice thickness data, form the basis for studying ice dynamics and discharge fluctuations and trends at sub-monthly to multi-annual time scales. Our results underscore the value of long-term comprehensive monitoring of the polar ice masses, which is vital for to gain insight for predicting their response to ongoing climate warming.</p><p>This poster highlights some of the main achievements and latest developments of 5 years of Sentinel-1 ice flow mapping in the Polar regions facilitated by the ESA Climate Change Initiative (CCI), EU Copernicus Climate Change Service (C3S) and Austrian Space Applications Programme (ASAP). </p>


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Martin Jakobsson ◽  
Larry A. Mayer ◽  
Johan Nilsson ◽  
Christian Stranne ◽  
Brian Calder ◽  
...  

Abstract The processes controlling advance and retreat of outlet glaciers in fjords draining the Greenland Ice Sheet remain poorly known, undermining assessments of their dynamics and associated sea-level rise in a warming climate. Mass loss of the Greenland Ice Sheet has increased six-fold over the last four decades, with discharge and melt from outlet glaciers comprising key components of this loss. Here we acquired oceanographic data and multibeam bathymetry in the previously uncharted Sherard Osborn Fjord in northwest Greenland where Ryder Glacier drains into the Arctic Ocean. Our data show that warmer subsurface water of Atlantic origin enters the fjord, but Ryder Glacier’s floating tongue at its present location is partly protected from the inflow by a bathymetric sill located in the innermost fjord. This reduces under-ice melting of the glacier, providing insight into Ryder Glacier’s dynamics and its vulnerability to inflow of Atlantic warmer water.


2018 ◽  
Vol 64 (247) ◽  
pp. 700-710 ◽  
Author(s):  
OLIVIER GAGLIARDINI ◽  
MAURO A. WERDER

ABSTRACTOver recent decades, Greenland ice sheet surface melt has shown an increase both in intensity and spatial extent. Part of this water probably reaches the bed and can enhance glacier speed, advecting a larger volume of ice into the ablation area. In the context of a warming climate, this mechanism could contribute to the future rate of thinning and retreat of land-terminating glaciers of Greenland. These changes in ice flow conditions will in turn influence surface crevassing and thus the ability of water to reach the bed at higher elevations. Here, using a coupled basal hydrology and prognostic ice flow model, the evolution of a Greenland-type glacier subject to increasing surface melt is studied over a few decades. For different scenarios of surface melt increase over the next decades, the evolution of crevassed areas and the ability of water to reach the bed is inferred. Our results indicate that the currently observed crevasse distribution is likely to extend further upstream which will allow water to reach the bed at higher elevations. This will lead to an increase in ice flux into the ablation area which, in turn, accelerates the mass loss of land-terminating glaciers.


2011 ◽  
Vol 57 (201) ◽  
pp. 88-102 ◽  
Author(s):  
H. Jay Zwally ◽  
Jun Li ◽  
Anita C. Brenner ◽  
Matthew Beckley ◽  
Helen G. Cornejo ◽  
...  

AbstractWe derive mass changes of the Greenland ice sheet (GIS) for 2003–07 from ICESat laser altimetry and compare them with results for 1992–2002 from ERS radar and airborne laser altimetry. The GIS continued to grow inland and thin at the margins during 2003–07, but surface melting and accelerated flow significantly increased the marginal thinning compared with the 1990s. The net balance changed from a small loss of 7 ± 3 Gt a−1 in the 1990s to 171 ± 4 Gt a−1 for 2003–07, contributing 0.5 mm a−1 to recent global sea-level rise. We divide the derived mass changes into two components: (1) from changes in melting and ice dynamics and (2) from changes in precipitation and accumulation rate. We use our firn compaction model to calculate the elevation changes driven by changes in both temperature and accumulation rate and to calculate the appropriate density to convert the accumulation-driven changes to mass changes. Increased losses from melting and ice dynamics (17–206 Gt a−1) are over seven times larger than increased gains from precipitation (10–35 Gt a−1) during a warming period of ∼2 K (10 a)−1 over the GIS. Above 2000 m elevation, the rate of gain decreased from 44 to 28 Gt a−1, while below 2000 m the rate of loss increased from 51 to 198 Gt a−1. Enhanced thinning below the equilibrium line on outlet glaciers indicates that increased melting has a significant impact on outlet glaciers, as well as accelerating ice flow. Increased thinning at higher elevations appears to be induced by dynamic coupling to thinning at the margins on decadal timescales.


2014 ◽  
Vol 8 (4) ◽  
pp. 3851-3905 ◽  
Author(s):  
J. J. Fürst ◽  
H. Goelzer ◽  
P. Huybrechts

Abstract. Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade, both increased surface melting and enhanced ice discharge from calving glaciers have contributed 0.6 ± 0.1 mm yr−1 to global sea-level rise, roughly in shares of respectively 60 and 40 per cent. Here we use a higher-order ice flow model, initialised to the present state, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the ice flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of ten Atmosphere and Ocean General Circulation Models and four Representative Concentration Pathway scenarios, the projected sea-level rise lies in the range of +1.4 to +16.6 cm by the year 2100. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to either abate when the warming already peaks in this century, allowing to preserve the ice sheet in a geometry close to the present-day state, or to remain at a constant level over three hundred years under moderate warming. The volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin reducing the ice–ocean contact area. The effect of enhanced basal lubrication on the volume evolution is found to be negligible on centennial time scales. The presented projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. The results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change projections, and not from ice dynamics.


Sign in / Sign up

Export Citation Format

Share Document