Debris cover and the thinning of Kennicott Glacier, Alaska

Author(s):  
Leif S. Anderson ◽  
William H. Armstrong ◽  
Robert S. Anderson ◽  
Dirk Scherler

<p>Many glaciers in High Mountain Asia are experiencing the debris-cover anomaly. The Kennicott Glacier, a large Alaskan Glacier, is also thinning most rapidly under debris cover. This contradiction has been explained by melt hotspots, such as ice cliffs, streams, or ponds scattered within the debris cover or by declining ice flow in time. We collected abundant in situ measurements of debris thickness, sub-debris melt, and ice cliff backwasting, allowing for extrapolation across the debris-covered tongue. A newly developed automatic ice cliff delineation method is the first to use only optical satellite imagery. The adaptive binary threshold method accurately estimates ice cliff coverage even where ice cliffs are small and debris color varies. We also develop additional remotely-sensed datasets of ice dynamical variables, other melt hot spots, and glacier thinning.</p><p>Kennicott Glacier exhibits the highest fractional area of ice cliffs (11.7 %) documented to date. Ice cliffs contribute 26 % of total melt across the glacier tongue. Although the <em>relative</em> importance of ice cliffs to area-average melt is significant, the<em> absolute</em> area-averaged melt is dominated by debris. At Kennicott Glacier, glacier-wide melt rates are not maximized in the zone of maximum thinning. Declining ice discharge through time therefore explains the rapid thinning. Through this study, Kennicott Glacier is the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.</p><p>We also carefully explore the relationship between debris, melt hotspots, ice dynamics, and thinning across the debris-covered tongue. In doing so we reveal a chain of linked processes that can explain the striking patterns expressed on the debris-covered tongue of Kennicott Glacier.</p>

2021 ◽  
Vol 15 (1) ◽  
pp. 265-282
Author(s):  
Leif S. Anderson ◽  
William H. Armstrong ◽  
Robert S. Anderson ◽  
Pascal Buri

Abstract. Many glaciers are thinning rapidly beneath melt-reducing debris cover, including Kennicott Glacier in Alaska where glacier-wide maximum thinning also occurs under debris. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, melt hotspots alone cannot account for the rapid thinning at Kennicott Glacier. We consider the significance of ice cliffs, debris, and ice dynamics in addressing this outstanding problem. We collected abundant in situ measurements of debris thickness, sub-debris melt, and ice cliff backwasting, allowing for extrapolation across the debris-covered tongue (the study area and the lower 24.2 km2 of the 387 km2 glacier). A newly developed automatic ice cliff delineation method is the first to use only optical satellite imagery. The adaptive binary threshold method accurately estimates ice cliff coverage even where ice cliffs are small and debris color varies. Kennicott Glacier exhibits the highest fractional area of ice cliffs (11.7 %) documented to date. Ice cliffs contribute 26 % of total melt across the glacier tongue. Although the relative importance of ice cliffs to area-average melt is significant, the absolute area-averaged melt is dominated by debris. At Kennicott Glacier, glacier-wide melt rates are not maximized in the zone of maximum thinning. Declining ice discharge through time therefore explains the rapid thinning. There is more debris-covered ice in Alaska than in any other region on Earth. Through this study, Kennicott Glacier is the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.


2019 ◽  
Author(s):  
Leif S. Anderson ◽  
Robert S. Anderson ◽  
Pascal Buri ◽  
William H. Armstrong

Abstract. The mass balance of many Alaskan glaciers is perturbed by debris cover. Yet the effect of debris on glacier response to climate change in Alaska has largely been overlooked. In three companion papers we assess the role of debris, ice dynamics, and surface processes in thinning Kennicott Glacier. In Part A, we report in situ measurements from the glacier surface. In Part B, we develop a method to delineate ice cliffs using high-resolution imagery and produce distributed mass balance estimates. In Part C we explore feedbacks that contribute to glacier thinning. Here in Part A, we describe data collected in the summer of 2011. We measured debris thickness (109 locations), sub-debris melt (74), and ice cliff backwasting (60) data from the debris-covered tongue. We also measured air-temperature (3 locations) and internal-debris temperature (10). The mean debris thermal conductivity was 1.06 W (m C)−1, increasing non-linearly with debris thickness. Mean debris thicknesses increase toward the terminus and margin where surface velocities are low. Despite the relatively high air temperatures above thick debris, the melt-insulating effect of debris dominates. Sub-debris melt rates ranged from 6.5 cm d−1 where debris is thin to 1.25 cm d−1 where debris is thick near the terminus. Ice cliff backwasting rates varied from 3 to 14 cm d−1 with a mean of 7.1 cm d−1 and tended to increase as elevation declined and debris thickness increased. Ice cliff backwasting rates are similar to those measured on debris-covered glaciers in High Mountain Asia and the Alps.


2020 ◽  
Author(s):  
Nathan Maier ◽  
Florent Gimbert ◽  
Fabien Gillet-Chaulet ◽  
Adrien Gilbert

Abstract. On glaciers and ice sheets, identifying the relationship between velocity and traction is critical to constrain the bed physics that control ice flow. Yet in Greenland, these relationships remain unquantified. We determine the spatial relationship between velocity and traction in all eight drainage catchments of Greenland. The basal traction is estimated using three different methods over large grid cells to minimize interpretation biases associated with unconstrained rheologic parameters used in numerical inversions. We find the relationships are consistent with our current understanding of basal physics in each catchment. We identify catchments that predominantly show Mohr-Coulomb-like behavior typical of deforming beds or significant cavitation, as well as catchments that predominantly show rate-strengthening behavior typical of Weertman-type hard-bed physics. Overall, the traction relationships suggest that the flow field and surface geometry over the grounded regions of the Greenland ice sheet is mainly dictated by Weertman-type hard-bed physics. Given the complex basal boundary across Greenland, the relationships are captured surprisingly well by simple traction laws over the entire velocity range, including regions with velocities over 1000 m/yr, which provide a parameterization that can be used to model ice dynamics at large scales. The results and analysis serve as a fundamental constraint on the physics of basal motion in Greenland and provide unique insight into future dynamics and vulnerabilities in a warming climate.


2019 ◽  
Author(s):  
Leif S. Anderson ◽  
William H. Armstrong ◽  
Robert S. Anderson ◽  
Pascal Buri

Abstract. The mass balance of many valley glaciers is enhanced by the presence of melt hotspots within otherwise continuous debris cover. We assess the effect of debris, melt hotspots, and ice dynamics on the thinning of Kennicott Glacier in three companion papers. In Part A we report in situ measurements from the debris-covered tongue. In Part B, we develop a method to delineate ice cliffs using high-resolution imagery and produce distributed mass balance estimates. Here in Part C we describe feedbacks controlling rapid thinning under thick debris. Despite the extreme abundance of ice cliffs on Kennicott Glacier, average melt rates are strongly suppressed downglacier due to thick debris. The estimated melt pattern therefore appears to reflect Østrem’s curve (the debris thickness-melt relationship). As Kennicott Glacier has thinned over the last century Østrem’s curve has manifested itself in two process domains on the glacier surface. The portion of the glacier affected by the upper-limb of Østrem’s curve corresponds to high melt, melt gradients, and ice dynamics, as well as high ice cliff and stream occurrence. The portion of the glacier affected by the lower-limb of Østrem’s curve corresponds to low melt, melt gradients, and ice dynamics, as well as high ice cliff and stream occurrence. The upglacier end of the zone of maximum thinning on Kennicott Glacier occurs at the boundary between these process domains and the bend in Østrem’s curve. The expansion of debris upglacier appears to be linked to changes in the surface velocity pattern through time. In response to climate warming, debris itself may therefore control where rapid thinning occurs on debris-covered glaciers. Ice cliffs are most abundant at the upglacier end of the zone of maximum thinning.


1996 ◽  
Vol 1996 ◽  
pp. 227-227 ◽  
Author(s):  
A.H. Murray ◽  
D. Daalkhaijav ◽  
C.D. Wood

In Mongolia animal performance is very much dependent on the quality and quantity of natural grassland available, since certain pastoral animals may obtain as much as 98% of their annual intake from pasture. There have been few studies to date on either in vivo or in vitro degradation of native Mongolian pastures. This paper seeks to investigate the degradation characteristics of native pastures from 2 regions in Mongolia, high mountain and forest steppe. It also investigates the relationship between the in vitro gas production technique and the in sacco technique.


2021 ◽  
Vol 15 (3) ◽  
pp. 1435-1451
Author(s):  
Nathan Maier ◽  
Florent Gimbert ◽  
Fabien Gillet-Chaulet ◽  
Adrien Gilbert

Abstract. On glaciers and ice sheets, identifying the relationship between velocity and traction is critical to constrain the bed physics that controls ice flow. Yet in Greenland, these relationships remain unquantified. We determine the spatial relationship between velocity and traction in all eight major drainage catchments of Greenland. The basal traction is estimated using three different methods over large grid cells to minimize interpretation biases associated with unconstrained rheologic parameters used in numerical inversions. We find the relationships are consistent with our current understanding of basal physics in each catchment. We identify catchments that predominantly show Mohr–Coulomb-like behavior typical of deforming beds or significant cavitation, as well as catchments that predominantly show rate-strengthening behavior typical of Weertman-type hard-bed physics. Overall, the traction relationships suggest that the flow field and surface geometry of the grounded regions in Greenland is mainly dictated by Weertman-type hard-bed physics up to velocities of approximately 450 m yr−1, except within the Northeast Greenland Ice Stream and areas near floatation. Depending on the catchment, behavior of the fastest-flowing ice (∼ 1000 m yr−1) directly inland from marine-terminating outlets exhibits Weertman-type rate strengthening, Mohr–Coulomb-like behavior, or is not confidently resolved given our methodology. Given the complex basal boundary across Greenland, the relationships are captured reasonably well by simple traction laws which provide a parameterization that can be used to model ice dynamics at large scales. The results and analysis serve as a first constraint on the physics of basal motion over the grounded regions of Greenland and provide unique insight into future dynamics and vulnerabilities in a warming climate.


1987 ◽  
Vol 33 (113) ◽  
pp. 79-82 ◽  
Author(s):  
Stefan Hastenrath

AbstractOur earlier monitoring program on Lewis Glacier, Mount Kenya, indicated a slow-down of the ice flow to January 1982, while based on the numerical modeling of the ice dynamics a further drastic decrease of the ice flow was predicted from the 1978 to the 1985 datum. This paper presents velocity measurements over the years 1982–83, 1984, and 1985. Changes of ice-flow conditions from 1978 to the mid 1980s are characterized by a velocity decrease by nearly half; a decrease of the maximum mass flux by more than half; a flattening and up-glacier shift of the velocity and mass-flux maxima; an up-glacier displacement of the transition between prevailingly longitudinal crevasses in the lower glacier and transverse crevasses in the upper glacier; and a terminus retreat by about 50 m. In consequence of the very weak ice flow remaining in Lewis Glacier, thinning and terminus retreat of the glacier are now primarily controlled by the in-situ net balance.


2021 ◽  
Author(s):  
Michael McCarthy ◽  
Evan Miles ◽  
Marin Kneib ◽  
Pascal Buri ◽  
Stefan Fugger ◽  
...  

Supraglacial debris strongly modulates glacier melt rates and can be decisive for ice dynamics and mountain hydrology. It is ubiquitous in High-Mountain Asia (HMA), yet because its thickness and supply rate from local topography are poorly known, our ability to forecast regional glacier change and streamflow is limited. Here we resolved the spatial distribution of supraglacial debris thickness (SDT) for 4401 glaciers in HMA for 2000-2016, via an inverse approach using a new dataset of glacier mass balance. We then determined debris-supply rate (DSR) to 3843 of those glaciers using a debris mass-balance model. Our results reveal high spatial variability in both SDT and DSR, with supraglacial debris most concentrated around Everest, and DSR highest in the Pamir-Alai. We demonstrate that DSR and, by extension, SDT increase with the temperature and slope of debris-supply slopes regionally and that SDT increases as ice flow decreases locally. Our centennial-scale estimates of DSR are an order of magnitude lower than millennial-scale estimates of headwall-erosion rate from 10Be cosmogenic nuclides, indicating that debris supply to the region's glaciers is highly episodic. We anticipate that our datasets will enable improved representation of the complex response of HMA's glaciers to climatic warming in future modelling efforts.


1987 ◽  
Vol 33 (113) ◽  
pp. 79-82 ◽  
Author(s):  
Stefan Hastenrath

AbstractOur earlier monitoring program on Lewis Glacier, Mount Kenya, indicated a slow-down of the ice flow to January 1982, while based on the numerical modeling of the ice dynamics a further drastic decrease of the ice flow was predicted from the 1978 to the 1985 datum. This paper presents velocity measurements over the years 1982–83, 1984, and 1985. Changes of ice-flow conditions from 1978 to the mid 1980s are characterized by a velocity decrease by nearly half; a decrease of the maximum mass flux by more than half; a flattening and up-glacier shift of the velocity and mass-flux maxima; an up-glacier displacement of the transition between prevailingly longitudinal crevasses in the lower glacier and transverse crevasses in the upper glacier; and a terminus retreat by about 50 m. In consequence of the very weak ice flow remaining in Lewis Glacier, thinning and terminus retreat of the glacier are now primarily controlled by thein-situnet balance.


Author(s):  
O.L. Krivanek ◽  
G.J. Wood

Electron microscopy at 0.2nm point-to-point resolution, 10-10 torr specimei region vacuum and facilities for in-situ specimen cleaning presents intere; ing possibilities for surface structure determination. Three methods for examining the surfaces are available: reflection (REM), transmission (TEM) and profile imaging. Profile imaging is particularly useful because it giv good resolution perpendicular as well as parallel to the surface, and can therefore be used to determine the relationship between the surface and the bulk structure.


Sign in / Sign up

Export Citation Format

Share Document