scholarly journals Retention time of lakes in the Larsemann Hills oasis, East Antarctica

2020 ◽  
Author(s):  
Elena Shevnina ◽  
Ekaterina Kourzeneva ◽  
Yury Dvornikov ◽  
Irina Fedorova

Abstract. The study gives first estimates of water transport scale for five lakes located in the Larsemann Hills oasis (69º23' S, 76º20' E) in the East Antarctica. We estimated the lake retention time (LRT) as a ratio of the lake volume to the income and outcome terms of a lake water balance equation. The LRT was evaluated for lakes of epiglacial and land-locked types, and it was assumed that these lakes are monomictic with water exchange existing during a warm season only. We used hydrological observations collected in 4 seasonal field campaigns to evaluate the LRT from the outcome and income terms of the water balance equation. For the epiglacial lakes Progress/LH57 and Nella/Scandrett/LH72, the LRT was estimated of 12–13 and 4–5 years, respectively. For the land-locked lakes Stepped/LH68, Sara Tarn/LH71 and Reid/LH70, our results show a big difference in the LRT calculated from the outcome and income components of the water balance equation. The LRT for these lakes vary depending on the methods and errors inherent to them. We suggested to rely on the estimations from the outcome surface runoff since they are based on the hydrological measurements with better quality. Lake Stepped/LH68 exchange water within less then 1.5 years. Lake Sara Tarn/LH71 and Lake Reid/LH70 are the endorheic ponds with the water exchange through mostly evaporation, their LRT was estimated as 21–22 years and from 8–9 years, respectively. To improve the estimates of the LRT, the hydrological observations are needed to monitor the lakes and streams during the warm season with the uniform observational program.

2021 ◽  
Vol 15 (6) ◽  
pp. 2667-2682
Author(s):  
Elena Shevnina ◽  
Ekaterina Kourzeneva ◽  
Yury Dvornikov ◽  
Irina Fedorova

Abstract. This study provides first estimates of the water transport timescale for five lakes located in the Larsemann Hills oasis (69∘23′ S, 76∘20′ E) in East Antarctica. We estimated lake retention time (LRT) as a ratio of lake volume to the inflow and outflow terms of a lake water balance equation. The LRT was evaluated for lakes of epiglacial and landlocked types, and it was assumed that these lakes are monomictic, with water exchange occurring during the warm season only. We used hydrological observations collected in four seasonal field campaigns to evaluate the LRT. For the epiglacial lakes Progress and Nella/Scandrett, the LRT was estimated at 12–13 and 4–5 years, respectively. For the landlocked lakes Stepped, Sarah Tarn and Reid, our results show a great difference in the LRT calculated from the outflow and inflow terms of the water balance equation. The LRTs for these lakes vary depending on the methods and errors inherent to them. We relied on the estimations from the outflow terms, since they are based on hydrological measurements with better quality. Lake Stepped exchanged water within 1.5 years. Sarah Tarn and Lake Reid are endorheic ponds, with water loss mainly through evaporation. Their LRTs were estimated as 21–22 and 8–9 years, respectively. To improve the LRT estimates, special hydrological observations are needed to monitor the lakes and streams during the warm season with a uniform observational programme.


2017 ◽  
pp. 176-183
Author(s):  
E.D. Gopchenko ◽  
J.S. Medvedєva ◽  
J.A. Makedonskay

Introduction. Violation of natural water exchange in the lake Yalpug - Kugurluy led to the deterioration of water quality in lakes and their shoaling and silting of lakes and overgrown with reeds. Purpose. Water system study mode lakes Yalpug - Kugurluy based on water balance equation and the definition and analysis components of the water balance equation system oz.Yalpuh - Kugurluy. Based on this analysis needs to develop to offer optimal functioning oz.Yalpuh - Kugurluy, in terms of its tiered and hydrochemical regimes as well as perform mathematical modeling of reservoir operation in different administrative actions. Methods. The article used the methods of analysis in theory, the method of water balance. Results. Established that the greatest impact on the water regime of lakes in incoming parts are precipitation, the expenditure - the evaporation from the water surface of lakes and water exchange мagee system of lakes Yalpug - Kugurluy and Danube river. Conclusion. It should be a more detailed investigation of the water regime of lakes, the adoption of recommendations for the improvement of water exchange in lakes as well as improve the quality of water for agricultural purposes.


2021 ◽  
Author(s):  
Elena Shevnina

<p><span>Antarctica keeps great volume of water on Earth. Its cold, dry and windy climate leads peculiar balance of water in various phases (solid, liquid and gas), and it is sensitive to warming. Increase of near surface temperature enhances water transition from solid to liquid phase (melting) as well as to gas (evaporation). The melted water is accumulated in a population of glacial lakes. These water bodies are located inside glaciers (subglacial type), over their surface (supraglacial type) or contacted glaciers (proglacial or epiglacial type). The glacial lakes are connected by a network of ephemeral streams. This hydrological network is typical in a lowest zone of Antarctic ice sheet, where the melting is substantial in the continental mass balance. </span></p><p>Water cycle in the glacial lakes differs with their type, and various processes drive water transport in the glacial lakes. In this study, the water balance equation method was applied to evaluate the volume of water accumulated in the glacial lakes. The water balance equation was written separately for the lakes of the epiglacial and supraglacial types. We used the observations by the long-term monitoring network, the data collected by the remote sensing, and the in-situ measurements gathered in field campaigns in the evaluations of the volume of lakes, the evaporation over a lake surface, and the inflow/outflow runoff. The components were evaluated for the epiglacial lakes located in the the Shirmacher, the Larsemann Hills and the Thala Hills oases (East Antarctica). </p><p><span>The lake volume was evaluated from the lake surface area and depth measured withing last 10 years. The results show that since late 1980s, the lake volume has increased on many epiglacial lakes located not only in the coastal oases but also in the continental interior. The results suggest that the evaporation in among a key components of the water balance of the glacial lakes located in the Antarctica. In the polar region, the role of the evaporation is traditionally underestimated due to lack of the observations with precise measuring techniques. The results of the study contribute with the QAntarctica with the dataset on the actual physiography of the glacial lakes in Antarctica. This study is supported by the Academy of Finland (contract number 304345) with the logistic support of the national programs on the Antarctic research.</span> </p>


1991 ◽  
Vol 23 (10-12) ◽  
pp. 1825-1833
Author(s):  
D. R. McGrath ◽  
G. E. Ho ◽  
K. Mathew

The potential usage of Evapotranspiration (ET) systems in remote Aboriginal communities was investigated. ET system sizing requirements were determined from the water balance equation. Water loss from lysimeters planted with trees (Eucalyptus camaldulensis) or lawn grass and from bare soil and gravel was monitored over several months and compared to pan evaporation measured during the same period. It was found that ET from bare soil and grass followed similar trends to pan evaporation, ranging from 30-60% of pan evaporation for soil and from 60-80% of pan evaporation for grass. ET rates increased in the tanks planted with trees as the plants grew and exceeded pan evaporation rates. Evaporation from gravel-filled lysimeters was low, being as little as 10% of pan evaporation.


2012 ◽  
Vol 7 (1) ◽  
pp. 014026 ◽  
Author(s):  
Zhenzhong Zeng ◽  
Shilong Piao ◽  
Xin Lin ◽  
Guodong Yin ◽  
Shushi Peng ◽  
...  

2020 ◽  
Author(s):  
Elena Shevnina ◽  
Ekaterina Kourzeneva ◽  
Yury Dvornikov ◽  
Irina Fedorova

Soil Science ◽  
2016 ◽  
Vol 181 (6) ◽  
pp. 224-231 ◽  
Author(s):  
Emmanouil A. Varouchakis ◽  
Katerina Spanoudaki ◽  
Dionissios T. Hristopulos ◽  
George P. Karatzas ◽  
Gerald A. Corzo Perez

Sign in / Sign up

Export Citation Format

Share Document