scholarly journals A numerical study of glacier advance over deforming till

2010 ◽  
Vol 4 (3) ◽  
pp. 359-372 ◽  
Author(s):  
G. J.-M. C. Leysinger Vieli ◽  
G. H. Gudmundsson

Abstract. The advance of a glacier over a deforming sediment layer is analysed numerically. We treat this problem as a contact problem involving two slowly-deforming viscous bodies. The surface evolution of the two bodies, and of the contact interface between them, is followed through time. Using various different non-linear till rheologies, we show how the mode of advance depends on the relative effective viscosities of ice and till. Three modes of advances are observed: (1) overriding, where the glacier advances through ice deformation only and without deforming the sediment; (2) plug-flow, where the sediment is strongly deformed, the ice moves forward as a block and a bulge is built in front of the glacier; and (3) mixed-flow, where the glacier advances through both ice and sediment deformation. For the cases of both overriding and mixed-flow, an inverse depth-age relationship within the ice is obtained. A series of model experiments show the contrast in effective viscosity between ice and till to be the single most important model parameter defining the mode of advance and the resulting thickness distribution of the till. Our model experiments indicate that the thickness of the deforming till layer is greatest close to the glacier front. Measurements of till thickness taken in such locations may not be representative of deforming till thickness elsewhere. Given sufficiently large contrast in effective viscosity between ice and till, a sediment bulge is formed in front of the glacier. During glacier advance, the bulge quickly reaches a steady state form strongly resembling single-crested push moraines. Inspection of particle paths within the sediment bulge, shows that particles within the till travel at a different speed from the bulge itself, and the push moraine to advance as a form-conserving non-linear wave.

2010 ◽  
Vol 4 (2) ◽  
pp. 823-864
Author(s):  
G. J.-M. C. Leysinger Vieli ◽  
G. H. Gudmundsson

Abstract. The advance of a glacier over a deforming sediment layer is analysed numerically. We treat this problem as a contact problem involving two slowly-deforming viscous bodies. The surface evolution of both bodies, and that of the contact interface between them, is followed in time. Using various different till rheologies we show how the mode of advance depends on the relative effective viscosities of ice and till. Three modes of advances are observed: 1) overriding, where the glacier advances through ice deformation only and without deforming the sediment; 2) plug-flow, where the sediment is strongly deformed, the ice moves forward as a block and a bulge is built in front of the glacier; and 3) mixed-flow, where the glacier overrides deforming sediment. An inverse depth-age relationship is obtained for a glacier advance by both overriding and mixed-flow. An additional model experiment, using a till with near plastic rheology, shows that the contrast in effective viscosity between ice and till is the single most important model parameter defining the mode of advance and the resulting thickness distribution of the till. Furthermore, the model calculations imply that measurements of sediment thickness and sediment deformation taken close to the glacier front significantly overestimate the average sediment thickness and displacement due to sediment deformation. Given sufficiently large contrast in effective viscosity between ice and till, a sediment bulge is formed in front of the glacier. During glacier advance, the bulge quickly reaches a steady state form strongly resembling single-crested push moraines. Inspection of particle paths within the sediment bulge, shows the material particle of the till to travel at different speed to that of the bulge itself, and the push moraine to advance as a form-conserving non-linear wave.


2020 ◽  
Vol 53 (2) ◽  
pp. 12334-12339
Author(s):  
M. Bonfanti ◽  
F. Carapellese ◽  
S.A. Sirigu ◽  
G. Bracco ◽  
G. Mattiazzo

Author(s):  
Dion Savio Antao ◽  
Bakhtier Farouk

A numerical study of non-linear, high amplitude standing waves in non-cylindrical circular resonators is reported here. These waves are shock-less and can generate peak acoustic overpressures that can exceed the ambient pressure by three/four times its nominal value. A high fidelity compressible computational fluid dynamic model is used to simulate the phenomena in cylindrical and arbitrarily shaped axisymmetric resonators. A right circular cylinder and frustum of cone are the two geometries studied. The model is validated using past numerical and experimental results of standing waves in cylindrical resonators. The non-linear nature of the harmonic response of the frustum of cone resonator system is investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude non-linear oscillations demonstrated can be used as a prime mover in a variety of applications including thermoacoustic cryocooling.


2010 ◽  
Vol 34 (8) ◽  
pp. 1984-1999 ◽  
Author(s):  
Ahmadreza Zamani ◽  
Ahmadreza Azimian ◽  
Arnold Heemink ◽  
Dimitri Solomatine

Author(s):  
Svein Sævik ◽  
Martin Storheim ◽  
Erik Levold

MARINTEK has developed software for detailed analysis of pipelines during installation and operation. As part of the software development a new coating finite element was developed in cooperation with StatoilHydro enabling efficient analysis of field joint strain concentrations of long concrete coated pipeline sections. The element was formulated based on sandwich beam theory and application of the Principle of Potential Energy. Large deformations and non-linear geometry effects were handled by a Co-rotated “ghost” reference description where elimination of rigid body motion was taken care of by referring to relative displacements in the strain energy term. The non-linearity related to shear interaction and concrete material behaviour was handled by applying non-linear springs and a purpose made concrete material model. The paper describes the theoretical formulation and numerical studies carried out to verify the model. The numerical study included comparison between model and full-scale tests as well as between model and other commercial software. At last a 3000 m long pipeline was analysed to demonstrate the strain concentration behaviour of a concrete coated pipeline exposed to high temperature snaking on the seabed.


Sign in / Sign up

Export Citation Format

Share Document