Numerical study of the velocity field predicted downstream a jet in cross flow using linear and non-linear turbulence models

Author(s):  
Kelvin Cristófalo de Morais ◽  
Luis Santos ◽  
Claudia Andrade
2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim ◽  
Hoon-Ki Choi

A numerical study for the evaluation of heat transfer correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor is performed. Three different types of flows such as parallel flow, cross flow, and two inclined flows are considered. Calculations are performed for these three typical flows in a heat exchanger changing turbulence models. The tested turbulence models are the shear stress transport (SST) model and the SSG-Reynolds stress turbulence model by Speziale, Sarkar, and Gaski (1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach,” J. Fluid Mech., 227, pp. 245–272). The computational model for parallel flow is a flow past tubes inside a circular cylinder and those for the cross flow and inclined flows are flows past the perpendicular and inclined tube banks enclosed by a rectangular duct. The computational results show that the SST model produces the most reliable results that can distinguish the best heat transfer correlation from other correlations for the three different flows. It was also shown that the SSG-RSTM high-Reynolds number turbulence model does not deal with the low-Prandtl number effect properly when the Peclet number is small. According to the present calculations for a parallel flow, all the old correlations do not match with the present numerical solutions and a new correlation is proposed. The correlations by Dwyer (1966, “Recent Developments in Liquid-Metal Heat Transfer,” At. Energy Rev., 4, pp. 3–92) for a cross flow and its modified correlation that takes into account of flow inclination for inclined flows work best and are accurate enough to be used for the design of the heat exchanger.


2009 ◽  
Vol 16 (3) ◽  
pp. 11-17 ◽  
Author(s):  
J. Szantyr ◽  
R. Biernacki ◽  
P. Flaszyński ◽  
P. Dymarski ◽  
M. Kraskowski

An experimental and numerical study of the vortices generated by hydrofoils The article presents the results of the research project concerning the process of formation of the tip vortices shed from hydrofoils of different geometry in different flow conditions. Three hydrofoils resembling the contemporary marine propeller blades have been selected for the study. The experimental part of the project consisted of the LDA measurements of the velocity field in three cross-sections of the vortex generated by the hydrofoils in the cavitation tunnel. The numerical part of the project consisted of calculations of the corresponding velocity field by means of three computer codes and several selected turbulence models. The comparative analysis of the experimental and numerical results, leading to the assessment of the accuracy of the numerical methods, is included.


2003 ◽  
Vol 125 (4) ◽  
pp. 994-1002 ◽  
Author(s):  
J. C. Bailey ◽  
J. Intile ◽  
T. F. Fric ◽  
A. K. Tolpadi ◽  
N. V. Nirmalan ◽  
...  

Experiments and numerical simulations were conducted to understand the heat transfer characteristics of a stationary gas turbine combustor liner cooled by impingement jets and cross flow between the liner and sleeve. Heat transfer was also aided by trip-strip turbulators on the outside of the liner and in the flowsleeve downstream of the jets. The study was aimed at enhancing heat transfer and prolonging the life of the combustor liner components. The combustor liner and flow sleeve were simulated using a flat-plate rig. The geometry has been scaled from actual combustion geometry except for the curvature. The jet Reynolds number and the mass-velocity ratios between the jet and cross flow in the rig were matched with the corresponding combustor conditions. A steady-state liquid crystal technique was used to measure spatially resolved heat transfer coefficients for the geometric and flow conditions mentioned above. The heat transfer was measured both in the impingement region as well as over the turbulators. A numerical model of the combustor test rig was created that included the impingement holes and the turbulators. Using CFD, the flow distribution within the flow sleeve and the heat transfer coefficients on the liner were both predicted. Calculations were made by varying the turbulence models, numerical schemes, and the geometrical mesh. The results obtained were compared to the experimental data and recommendations have been made with regard to the best modeling approach for such liner-flow sleeve configurations.


2013 ◽  
Vol 465-466 ◽  
pp. 603-607
Author(s):  
Greg G. Gomang ◽  
Ann Lee

This paper presents a two-dimensional numerical study on the interaction of synthetic jet and the cross flow inside a microchannel. Three different turbulence models namely the standard k-, Shear Stress Transport (SST) and Scale Adaptive Simulation Shear Stress Transport (SAS SST) were tested for their ability to predict the flow structure generated by a synthetic jet. The results are validated against existing experimental data. The SAS SST model was found to give the most realistic prediction of the fluid flow based on the good agreement with experimental data.


Author(s):  
Jeremy C. Bailey ◽  
John Intile ◽  
Thomas F. Fric ◽  
Anil K. Tolpadi ◽  
Nirm V. Nirmalan ◽  
...  

Experiments and numerical simulations were conducted to understand the heat transfer characteristics of a stationary gas turbine combustor liner cooled by impingement jets and cross flow between the liner and sleeve. Heat transfer was also aided by trip-strip turbulators on the outside of the liner and in the flowsleeve downstream of the jets. The study was aimed at enhancing heat transfer and prolonging the life of the combustor liner components. The combustor liner and flow sleeve were simulated using a flat plate rig. The geometry has been scaled from actual combustion geometry except for the curvature. The jet Reynolds number and the mass-velocity ratios between the jet and cross flow in the rig were matched with the corresponding combustor conditions. A steady state liquid crystal technique was used to measure spatially resolved heat transfer coefficients for the geometric and flow conditions mentioned above. The heat transfer was measured both in the impingement region as well as over the turbulators. A numerical model of the combustor test rig was created that included the impingement holes and the turbulators. Using CFD, the flow distribution within the flow sleeve and the heat transfer coefficients on the liner were both predicted. Calculations were made by varying the turbulence models, numerical schemes, and the geometrical mesh. The results obtained were compared to the experimental data and recommendations have been made with regard to the best modeling approach for such liner-flow sleeve configurations.


2015 ◽  
Vol 11 (1) ◽  
pp. 2960-2971
Author(s):  
M.Abdel Wahab

The Numerical study of the flow of a fluid in the annular region between two eccentric sphere susing PHP Code isinvestigated. This flow is created by considering the inner sphere to rotate with angular velocity 1  and the outer sphererotate with angular velocity 2  about the axis passing through their centers, the z-axis, using the three dimensionalBispherical coordinates (, ,) .The velocity field of fluid is determined by solving equation of motion using PHP Codeat different cases of angular velocities of inner and outer sphere. Also Finite difference code is used to calculate surfacetractions at outer sphere.


2003 ◽  
Vol 3 ◽  
pp. 246-254
Author(s):  
C.I. Mikhaylenko ◽  
S.F. Urmancheev

The behavior of a liquid flowing through a fixed bulk porous layer of a granular catalyst is considered. The effects of the nonuniformity of the fluid velocity field, which arise when the surface of the layer is curved, and the effect of the resulting inhomogeneity on the speed and nature of the course of chemical reactions are investigated by the methods of a computational experiment.


Sign in / Sign up

Export Citation Format

Share Document