scholarly journals Retrieval of snow grain size and albedo of western Himalayan snow cover using satellite data

2011 ◽  
Vol 5 (4) ◽  
pp. 831-847 ◽  
Author(s):  
H. S. Negi ◽  
A. Kokhanovsky

Abstract. In the present study we describe the retrievals of snow grain size and spectral albedo (plane and spherical albedo) for western Himalayan snow cover using Hyperion sensor data. The asymptotic radiative transfer (ART) theory was explored for the snow retrievals. To make the methodology operational only five spectral bands (440, 500, 1050, 1240 and 1650 nm) of Hyperion were used for snow parameters retrieval. The bi-spectral method (440 nm in the visible and 1050/1240 nm in the NIR region) was used to retrieve snow grain size. Spectral albedos were retrieved using satellite reflectances and estimated grain size. A good agreement was observed between retrieved snow parameters and ground observed snow-meteorological conditions. The satellite retrieved grain sizes were compared with field spectroradiometer retrieved grain sizes and close results were found for lower Himalayan snow. The wavelength 1240 nm was found to be more suitable compared to 1050 nm for grain size retrieval along the steep slopes. The methodology was able to retrieve the spatial variations in snow parameters in different parts of western Himalaya which are due to snow climatic and terrain conditions of Himalaya. This methodology is of importance for operational snow cover and glacier monitoring in Himalayan region using space-borne and air-borne sensors.

2011 ◽  
Vol 5 (1) ◽  
pp. 605-653 ◽  
Author(s):  
H. S. Negi ◽  
A. Kokhanovsky

Abstract. In the present study we describe the retrievals of snow grain size and spectral albedo (plane and spherical albedo) for Western Himalayan snow cover using Hyperion sensor data. The asymptotic radiative transfer (ART) theory was explored for the snow retrievals. To make the methodology operational only five spectral bands (440, 500, 1050, 1240 and 1650 nm) of Hyperion were used for snow parameters retrieval. The bi-spectral method (440 nm in the visible and 1050/1240 nm in the NIR region) was used to retrieve snow grain size. Spectral albedos were retrieved using satellite reflectances and estimated grain size. A good agreement was observed between retrieved snow parameters and ground observed snow-meteorological conditions. The satellite retrieved grain sizes were compared with field spectroradiometer retrieved grain sizes and close results were found for Lower Himalayan snow. The wavelength 1240 nm was found to be more suitable compared to 1050 nm for grain size retrieval along the steep slopes. The methodology was able to retrieve the spatial variations in snow parameters in different parts of Western Himalaya which are due to snow climatic and terrain conditions of Himalaya. This methodology is of importance for operational snow cover and glacier monitoring in Himalayan region using space-borne and air-borne sensors.


2011 ◽  
Vol 5 (1) ◽  
pp. 203-217 ◽  
Author(s):  
H. S. Negi ◽  
A. Kokhanovsky

Abstract. In the present paper, spectral reflectance measurements of Himalayan seasonal snow were carried out and analysed to retrieve the snow albedo and effective grain size. The asymptotic radiative transfer (ART) theory was applied to retrieve the plane and spherical albedo. The retrieved plane albedo was compared with the measured spectral albedo and a good agreement was observed with ±10% differences. Retrieved integrated albedo was found within ±6% difference with ground observed broadband albedo. The retrieved snow grain sizes using different models based on the ART theory were compared for various snow types and it was observed that the grain size model using two channel method (one in visible and another in NIR region) can work well for the Himalayan seasonal snow and it was found consistent with temporal changes in grain size. This method can work very well for clean, dry snow as in the upper Himalaya, but sometimes, due to the low reflectances (<20%) using wavelength 1.24 μm, the ART theory cannot be applied, which is common in lower and middle Himalayan old snow. This study is important for monitoring the Himalayan cryosphere using air-borne or space-borne sensors.


2010 ◽  
Vol 4 (4) ◽  
pp. 2337-2372 ◽  
Author(s):  
H. S. Negi ◽  
A. Kokhanovsky

Abstract. In the present paper spectral reflectance measurements of Himalayan seasonal snow were carried out and analysed to retrieve the snow albedo and effective grain size. The asymptotic radiative transfer (ART) theory was applied to retrieve the plane and spherical albedo. The retrieved plane albedo was compared with the measured spectral albedo and a good agreement was observed with ±10% measured error accuracy. Retrieved integrated albedo was found within ±6% difference with ground observed broadband albedo. The snow grain sizes retrieved using different models based on ART theory are compared for different snow types and it was observed that presently grain size model using two channel method (one in visible and another in NIR region) can work well for Himalayan seasonal snow and it was found consistence with temporal increased grain size. This method can work very well for clean dry snow like in upper Himalaya but sometime due to low reflectances (<0.2) using wavelength 1.24 μm ART theory can not be applied, which is common in lower and middle Himalayan old snow. This study is of importance for monitoring the Himalayan cryosphere using air-borne or space-borne sensors.


1993 ◽  
Vol 17 ◽  
pp. 171-176 ◽  
Author(s):  
Richard L. Armstrong ◽  
Alfred Chang ◽  
Albert Rango ◽  
Edward Josberger

The application of passive microwave radiometry to the remote sensing of snow properties is based on the ratio of emitted to scattered portions of the upwelling radiation. Increased scattering is indicative of increased snow amount, i.e. the number of snow grains present. However, scattering is also directly proportional to snow grain-size for a given snow amount. Current snow cover retrieval algorithms produce inaccurate results when snow grain-sizes are unusually large. Therefore, it is necessary to characterize snow grain-size on a regional scale (and perhaps local scale in extreme situations) in order to adjust passive microwave algorithms. Preliminary analysis indicates that: (1) algorithms are not as sensitive to the presence of large grain-sizes as the initial theory had indicated; (2) standard deviation of grain-size diameters throughout the total snow cover may often be less than 0.5 mm, thus average grain-size data may often serve to characterize the detailed stratigraphy of the total snow cover; (3) conditions in subfreezing snow which produce grain-sizes that greatly exceed a mean diameter value of 1–2 mm result from snow cover/climate relationships which can be modelled/monitored on a regional scale. A preliminary method is investigated for selecting snow retrieval algorithms according to prevailing regional-scale grain-size.


Author(s):  
M. Anul Haq

The present study demonstrates the potential of imaging spectroscopy to produce the snow cover maps and estimation of snow grain size in the Himalayan region. Snow cover maps and snow grain size produce from imaging spectroscopy data were also compared with multispectral imagery (i.e. Landsat 8 and ASTER). Snow grain size was estimated using the snow grain index and compared with the asymptotic radiative transfer (ART) theory method. The overall matching area was 78.29 % among different snow grain size classes using grain index Method and ART method. An attempt has been made to derive the snow grain size using Landsat 8 and ASTER data for the same area. It was found that grain size derived from Landsat 8 and ASTER data show correlation of 81.67 % and 86.34 % respectively. The snow cover maps were produced using Normalized Difference Snow Index (NDSI). Snow cover maps were also produced using ASTER imagery for the same area and compared with Hyperion snow cover maps. The correlation between both snow cover maps were show 91 % correlation.


1993 ◽  
Vol 17 ◽  
pp. 171-176 ◽  
Author(s):  
Richard L. Armstrong ◽  
Alfred Chang ◽  
Albert Rango ◽  
Edward Josberger

The application of passive microwave radiometry to the remote sensing of snow properties is based on the ratio of emitted to scattered portions of the upwelling radiation. Increased scattering is indicative of increased snow amount, i.e. the number of snow grains present. However, scattering is also directly proportional to snow grain-size for a given snow amount. Current snow cover retrieval algorithms produce inaccurate results when snow grain-sizes are unusually large. Therefore, it is necessary to characterize snow grain-size on a regional scale (and perhaps local scale in extreme situations) in order to adjust passive microwave algorithms. Preliminary analysis indicates that: (1) algorithms are not as sensitive to the presence of large grain-sizes as the initial theory had indicated; (2) standard deviation of grain-size diameters throughout the total snow cover may often be less than 0.5 mm, thus average grain-size data may often serve to characterize the detailed stratigraphy of the total snow cover; (3) conditions in subfreezing snow which produce grain-sizes that greatly exceed a mean diameter value of 1–2 mm result from snow cover/climate relationships which can be modelled/monitored on a regional scale. A preliminary method is investigated for selecting snow retrieval algorithms according to prevailing regional-scale grain-size.


Author(s):  
Yasuhito NOSHI ◽  
Akio KOBAYASHI ◽  
Takaaki UDA ◽  
Masumi SERIZAWA ◽  
Takayuki KUMADA
Keyword(s):  

1998 ◽  
Vol 35 (2) ◽  
pp. 234-250 ◽  
Author(s):  
JF (Derick) Nixon ◽  
Nick Holl

A geothermal model is described that simulates simultaneous deposition, freezing, and thawing of mine tailings or sequentially placed layers of embankment soil. When layers of soil or mine tailings are placed during winter subfreezing conditions, frozen layers are formed in the soil profile that may persist with time. The following summer, warmer soil placement may not be sufficient to thaw out layers from the preceding winter. Remnant frozen soil layers may persist for many years or decades. The analysis is unique, as it involves a moving upper boundary and different surface snow cover functions applied in winter time. The model is calibrated based on two uranium mines in northern Saskatchewan. The Rabbit Lake scenario involves tailings growth to a height of 120 m over a period of 24 years. At Key Lake, tailings increase in height at a rate of 1.3 m/year. Good agreement between the observed position of frozen layers and those predicted by the model is obtained. Long-term predictions indicate that from 80 to 200 years would be required to thaw out the frozen layers formed during placement, assuming 1992 placement conditions continue. Deposition rates of 1.5-3 m/year give the largest amounts of frozen ground. The amount of frozen ground is sensitive to the assumed snow cover function during winter.Key words: geothermal, model, tailings, freezing, deposition.


2013 ◽  
Vol 275-277 ◽  
pp. 1833-1837
Author(s):  
Ke Lu Wang ◽  
Shi Qiang Lu ◽  
Xin Li ◽  
Xian Juan Dong

A Johnson-Mehl-Avrami-Kolmogorov (JMAK)-model was established for dynamic recrystallization in hot deformation process of 52100 steel. The effects of hot deformation temperature, true strain and strain rate on the microstructural evolution of the steel were physically studied by using Gleeble-1500 thermo-mechanical simulator and the experimental results were used for validation of the JMAK-model. Through simulation and experiment, it is found that the predicted results of DRX volume fraction, DRX grain size and average grain size are in good agreement with the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document