scholarly journals Forecasting temperate alpine glacier survival from accumulation zone observations

2009 ◽  
Vol 3 (2) ◽  
pp. 323-350 ◽  
Author(s):  
M. S. Pelto

Abstract. For temperate alpine glaciers survival is dependent on the consistent presence of an accumulation zone. The lack of a consistent and persistent accumulation zone leads to substantial thinning of the glacier in the accumulation zone. Accumulation zone thinning is evident in satellite imagery or field observation based the emergence of new rock outcrops or the recession of the margin of the glacier in the accumulation zone along a substantial portion of its perimeter. In either case the accumulation zone is no longer functioning as an accumulation zone and survival is unlikely. In both the North Cascades and Wind River Range nine of the fifteen glaciers examined are forecast not to survive the current climate or future additional warming. The results vary considerably with adjacent glaciers having a different survival forecast. This emphasizes the danger of extrapolating survival from one glacier to the next. This trait also emphasizes the value of a simple forecasting tool that can be applied to all glaciers. The automated remote sensing based glacier classification schemes developed offer the potential for automating this process based on the changes in the glacier outline.

2010 ◽  
Vol 4 (1) ◽  
pp. 67-75 ◽  
Author(s):  
M. S. Pelto

Abstract. Temperate alpine glacier survival is dependent on the consistent presence of an accumulation zone. Frequent low accumulation area ratio values, below 30%, indicate the lack of a consistent accumulation zone, which leads to substantial thinning of the glacier in the accumulation zone. This thinning is often evident from substantial marginal recession, emergence of new rock outcrops and surface elevation decline in the accumulation zone. In the North Cascades 9 of the 12 examined glaciers exhibit characteristics of substantial accumulation zone thinning; marginal recession or emergent bedrock areas in the accumulation zone. The longitudinal profile thinning factor, f, which is a measure of the ratio of thinning in the accumulation zone to that at the terminus, is above 0.6 for all glaciers exhibiting accumulation zone thinning characteristics. The ratio of accumulation zone thinning to cumulative mass balance is above 0.5 for glacier experiencing substantial accumulation zone thinning. Without a consistent accumulation zone these glaciers are forecast not to survive the current climate or future additional warming. The results vary considerably with adjacent glaciers having a different survival forecast. This emphasizes the danger of extrapolating survival from one glacier to the next.


2017 ◽  
Vol 43 (2) ◽  
pp. 467 ◽  
Author(s):  
J.L. Riedel

Glacial retreat from the North Cascade Range after the Last Glacial Maximum (LGM) at approximately 21 ka until the end of the Pleistocene at 11.6 ka was complex and included both continental and alpine glaciers. Alpine valley glaciers reached their maximum extent before 21.4 ka, then underwent a punctuated retreat to valley heads. In the south, beyond the reach of ice sheet glaciation, several end moraines were deposited after the LGM. Moraines marking a re-advance of alpine glaciers to <5 km below modern glaciers were deposited from 13.7 to 11.6 ka.The Cordilleran Ice Sheet flowed south from near 52° north latitude in British Columbia into the North Cascades. At its maximum size the ice sheet covered more than 500 km2 and had a surface elevation of 2200 m in upper Skagit valley. Deglaciation commenced about 16 ka by frontal retreat of ice flanking the mountains. Surface lowering eventually exposed regional hydrologic divides and stranded ice masses more than 1000 m thick in valleys. Isolated fragments of the ice sheet disintegrated rapidly from 14.5 to 13.5 ka, with the pattern of deglaciation in each valley controlled by valley orientation, topography, and climate. Like alpine glaciers to the south, retreat of the ice sheet remnants was slowed by millennial scale climate fluctuations that produced at least one large recessional moraine, and multiple lateral moraines and kame terraces from elevations of 200-1400 m in most valleys. Large volumes of glacial meltwater flowed through the North Cascades and was concentrated in the Skagit and Methow rivers. Outburst floods from deep proglacial lakes spilled across divides and down steep canyons, depositing coarse gravel terraces and alluvial fans at valley junctions.Climate at the LGM was characterized by a mean summer temperature 6 to 7 ºC cooler than today, and 40% lower mean annual precipitation. Persistence of this climate for thousands of years before the LGM caused a 750-1000 m decrease in alpine glacier equilibrium line altitudes (ELA). In the southern North Cascades at 16 ka, glacial ELAs were 500-700 m lower than today, and during advances from 13.7 to 11.6 ka alpine glacier ELAs were 200-400 m lower.


1984 ◽  
Vol 21 (3) ◽  
pp. 304-316 ◽  
Author(s):  
James E. Beget

Tephra layers near Glacier Peak in the North Cascade Range provide limiting dates for four periods of alpine glacier advance. Field relations suggest that late Wisconsin alpine glaciers last advanced prior to the eruption of tephra layers from Glacier Peak about 11,250 yr B.P. Late Wisconsin deglaciation in the central North Cascades was complete prior to the Glacier Peak tephra eruptions. Glaciers again expanded in the early Holocene about 8400 – 8300 yr B.P. Soil formed in alpine meadows during an episode of mild climate in the middle Holocene prior to at least two intervals of glacier expansion: an older episode between 5100 and 3400 yr B.P., and a younger episode within the last 1000 yr.


10.1029/ft307 ◽  
1989 ◽  
Author(s):  
R. W. Tabor ◽  
R. A. Haugerud ◽  
E. H. Brown ◽  
R. S. Babcock ◽  
R. B. Miller

1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.


2017 ◽  
Author(s):  
Kirsten B. Sauer ◽  
◽  
Stacia M. Gordon ◽  
Robert B. Miller ◽  
Jeffrey Vervoort ◽  
...  

2019 ◽  
Vol 19 (11) ◽  
pp. 2477-2495
Author(s):  
Ronda Strauch ◽  
Erkan Istanbulluoglu ◽  
Jon Riedel

Abstract. We developed a new approach for mapping landslide hazards by combining probabilities of landslide impacts derived from a data-driven statistical approach and a physically based model of shallow landsliding. Our statistical approach integrates the influence of seven site attributes (SAs) on observed landslides using a frequency ratio (FR) method. Influential attributes and resulting susceptibility maps depend on the observations of landslides considered: all types of landslides, debris avalanches only, or source areas of debris avalanches. These observational datasets reflect the detection of different landslide processes or components, which relate to different landslide-inducing factors. For each landslide dataset, a stability index (SI) is calculated as a multiplicative result of the frequency ratios for all attributes and is mapped across our study domain in the North Cascades National Park Complex (NOCA), Washington, USA. A continuous function is developed to relate local SI values to landslide probability based on a ratio of landslide and non-landslide grid cells. The empirical model probability derived from the debris avalanche source area dataset is combined probabilistically with a previously developed physically based probabilistic model. A two-dimensional binning method employs empirical and physically based probabilities as indices and calculates a joint probability of landsliding at the intersections of probability bins. A ratio of the joint probability and the physically based model bin probability is used as a weight to adjust the original physically based probability at each grid cell given empirical evidence. The resulting integrated probability of landslide initiation hazard includes mechanisms not captured by the infinite-slope stability model alone. Improvements in distinguishing potentially unstable areas with the proposed integrated model are statistically quantified. We provide multiple landslide hazard maps that land managers can use for planning and decision-making, as well as for educating the public about hazards from landslides in this remote high-relief terrain.


1968 ◽  
Vol 22 ◽  
pp. 44-79 ◽  
Author(s):  
William E. Taylor

The Tyara site, KkFb-7 in the National Museum catalogue and site file, faces the north coast of the Ungava mainland and rests on the west shore of Sugluk Island (Fig. 1). That island stands about five hundred yards from the mainland and from Sugluk Inlet, one of the few good harbors on that coast. This handsome little island, about one and one-half miles long and as wide, consists of rounded, rugged, hardrock hills that shelter well-vegetated, generally flat-floored valleys. The valleys often contain marshy patches. The shore, of variable incline, is quite jagged, a result of abrupt rock outcrops projecting seaward from brief stretches of sandy beach. The shore facing the mainland is, therefore, quite convenient for small boat use. Dark grey gneisses seem to predominate, although they are often cut by dykes and veins of lighter material, notably quartz. The dense, green valley and hillside vegetation includes willows, mosses, grasses, lichens, and a pleasant profusion of arctic wild flowers (Polunin 1948, Pt. III). I was told at Sugluk that at the head of the inlet, willows, growing in protected situations, reach the thickness of a man's wrist.


Sign in / Sign up

Export Citation Format

Share Document