Estimations for Percentage of Impervious Area by the Use of Satellite Remote Sensing Imagery

1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.

Author(s):  
R. H. Fraser ◽  
I. Olthof ◽  
M. Maloley ◽  
R. Fernandes ◽  
C. Prevost ◽  
...  

Northern environments are changing in response to recent climate warming, resource development, and natural disturbances. The Arctic climate has warmed by 2&ndash;3°C since the 1950’s, causing a range of cryospheric changes including declines in sea ice extent, snow cover duration, and glacier mass, and warming permafrost. The terrestrial Arctic has also undergone significant temperature-driven changes in the form of increased thermokarst, larger tundra fires, and enhanced shrub growth. Monitoring these changes to inform land managers and decision makers is challenging due to the vast spatial extents involved and difficult access. <br><br> Environmental monitoring in Canada’s North is often based on local-scale measurements derived from aerial reconnaissance and photography, and ecological, hydrologic, and geologic sampling and surveying. Satellite remote sensing can provide a complementary tool for more spatially comprehensive monitoring but at coarser spatial resolutions. Satellite remote sensing has been used to map Arctic landscape changes related to vegetation productivity, lake expansion and drainage, glacier retreat, thermokarst, and wildfire activity. However, a current limitation with existing satellite-based techniques is the measurement gap between field measurements and high resolution satellite imagery. Bridging this gap is important for scaling up field measurements to landscape levels, and validating and calibrating satellite-based analyses. This gap can be filled to a certain extent using helicopter or fixed-wing aerial surveys, but at a cost that is often prohibitive. <br><br> Unmanned aerial vehicle (UAV) technology has only recently progressed to the point where it can provide an inexpensive and efficient means of capturing imagery at this middle scale of measurement with detail that is adequate to interpret Arctic vegetation (i.e. 1&ndash;5 cm) and coverage that can be directly related to satellite imagery (1&ndash;10 km<sup>2</sup>). Unlike satellite measurements, UAVs permit frequent surveys (e.g. for monitoring vegetation phenology, fires, and hydrology), are not constrained by repeat cycle or cloud cover, can be rapidly deployed following a significant event, and are better suited than manned aircraft for mapping small areas. UAVs are becoming more common for agriculture, law enforcement, and marketing, but their use in the Arctic is still rare and represents untapped technology for northern mapping, monitoring, and environmental research. <br><br> We are conducting surveys over a range of sensitive or changing northern landscapes using a variety of UAV multicopter platforms and small sensors. Survey targets include retrogressive thaw slumps, tundra shrub vegetation, recently burned vegetation, road infrastructure, and snow. Working with scientific partners involved in northern monitoring programs (NWT CIMP, CHARS, NASA ABOVE, NRCan-GSC) we are investigating the advantages, challenges, and best practices for acquiring high resolution imagery from multicopters to create detailed orthomosaics and co-registered 3D terrain models. Colour and multispectral orthomosaics are being integrated with field measurements and satellite imagery to conduct spatial scaling of environmental parameters. Highly detailed digital terrain models derived using structure from motion (SfM) photogrammetry are being applied to measure thaw slump morphology and change, snow depth, tundra vegetation structure, and surface condition of road infrastructure. <br><br> These surveys and monitoring applications demonstrate that UAV-based photogrammetry is poised to make a rapid contribution to a wide range of northern monitoring and research applications.


2019 ◽  
Vol 12 (1) ◽  
pp. 81 ◽  
Author(s):  
Xinghua Li ◽  
Zhiwei Li ◽  
Ruitao Feng ◽  
Shuang Luo ◽  
Chi Zhang ◽  
...  

Urban geographical maps are important to urban planning, urban construction, land-use studies, disaster control and relief, touring and sightseeing, and so on. Satellite remote sensing images are the most important data source for urban geographical maps. However, for optical satellite remote sensing images with high spatial resolution, certain inevitable factors, including cloud, haze, and cloud shadow, severely degrade the image quality. Moreover, the geometrical and radiometric differences amongst multiple high-spatial-resolution images are difficult to eliminate. In this study, we propose a robust and efficient procedure for generating high-resolution and high-quality seamless satellite imagery for large-scale urban regions. This procedure consists of image registration, cloud detection, thin/thick cloud removal, pansharpening, and mosaicking processes. Methodologically, a spatially adaptive method considering the variation of atmospheric scattering, and a stepwise replacement method based on local moment matching are proposed for removing thin and thick clouds, respectively. The effectiveness is demonstrated by a successful case of generating a 0.91-m-resolution image of the main city zone in Nanning, Guangxi Zhuang Autonomous Region, China, using images obtained from the Chinese Beijing-2 and Gaofen-2 high-resolution satellites.


2018 ◽  
Vol 10 (9) ◽  
pp. 1343 ◽  
Author(s):  
Qing Xia ◽  
Cheng-Zhi Qin ◽  
He Li ◽  
Chong Huang ◽  
Fen-Zhen Su

Mangrove forests, which are essential for stabilizing coastal ecosystems, have been suffering from a dramatic decline over the past several decades. Mapping mangrove forests using satellite imagery is an efficient way to provide key data for mangrove forest conservation. Since mangrove forests are periodically submerged by tides, current methods of mapping mangrove forests, which are normally based on single-date, remote-sensing imagery, often underestimate the spatial distribution of mangrove forests, especially when the images used were recorded during high-tide periods. In this paper, we propose a new method of mapping mangrove forests based on multi-tide, high-resolution satellite imagery. In the proposed method, a submerged mangrove recognition index (SMRI), which is based on the differential spectral signature of mangroves under high and low tides from multi-tide, high-resolution satellite imagery, is designed to identify submerged mangrove forests. The proposed method applies the SMRI values, together with textural features extracted from high-resolution imagery and geographical features of mangrove forests, to an object-based support vector machine (SVM) to map mangrove forests. The proposed method was evaluated via a case study with GF-1 images (high-resolution satellites launched by China) in Yulin City, Guangxi Zhuang Autonomous Region of China. The results show that our proposed method achieves satisfactory performance, with a kappa coefficient of 0.86 and an overall accuracy of 94%, which is better than results obtained from object-based SVMs that use only single-date, remote sensing imagery.


2021 ◽  
Vol 13 (15) ◽  
pp. 2862
Author(s):  
Yakun Xie ◽  
Dejun Feng ◽  
Sifan Xiong ◽  
Jun Zhu ◽  
Yangge Liu

Accurately building height estimation from remote sensing imagery is an important and challenging task. However, the existing shadow-based building height estimation methods have large errors due to the complex environment in remote sensing imagery. In this paper, we propose a multi-scene building height estimation method based on shadow in high resolution imagery. First, the shadow of building is classified and described by analyzing the features of building shadow in remote sensing imagery. Second, a variety of shadow-based building height estimation models is established in different scenes. In addition, a method of shadow regularization extraction is proposed, which can solve the problem of mutual adhesion shadows in dense building areas effectively. Finally, we propose a method for shadow length calculation combines with the fish net and the pauta criterion, which means that the large error caused by the complex shape of building shadow can be avoided. Multi-scene areas are selected for experimental analysis to prove the validity of our method. The experiment results show that the accuracy rate is as high as 96% within 2 m of absolute error of our method. In addition, we compared our proposed approach with the existing methods, and the results show that the absolute error of our method are reduced by 1.24 m-3.76 m, which can achieve high-precision estimation of building height.


Sign in / Sign up

Export Citation Format

Share Document