scholarly journals Sensitivity of the Weddell Sea sector ice streams to sub-shelf melting and surface accumulation

2013 ◽  
Vol 7 (6) ◽  
pp. 5475-5508 ◽  
Author(s):  
A. P. Wright ◽  
A. M. Le Brocq ◽  
S. L. Cornford ◽  
M. J. Siegert ◽  
R. G. Bingham ◽  
...  

Abstract. A recent ocean modelling study indicates that possible changes in circulation may bring warm deep ocean water into direct contact with the grounding lines of the Filchner-Ronne ice streams, suggesting the potential for future ice losses from this sector equivalent to ~ 0.3 m of sea-level rise. Significant advancements have been made in our knowledge of both the basal topography and ice velocity in the Weddell Sea sector, thus enabling an assessment to be made of the relative sensitivities of the diverse collection of ice streams feeding the Filchner-Ronne Ice Shelf. Here we use the BISICLES ice sheet model, which employs adaptive-mesh refinement to resolve grounding line dynamics, to carry out such an assessment. The impact of perturbations to the surface and sub-shelf mass balance forcing fields from our 2000 yr "reference" model run indicate that both the Institute and Möller Ice Streams are highly sensitive to changes in basal melting either near to their respective grounding lines, or in the region of the ice rises within the Filchner-Ronne Ice Shelf. These same perturbations have little impact, however, on Rutford, Carlson or Foundation ice streams, while Evans Ice Stream is found to enter a phase of unstable retreat only after melt at its grounding line has increased by an order-of-magnitude from likely present-day values.

2014 ◽  
Vol 8 (6) ◽  
pp. 2119-2134 ◽  
Author(s):  
A. P. Wright ◽  
A. M. Le Brocq ◽  
S. L. Cornford ◽  
R. G. Bingham ◽  
H. F. J. Corr ◽  
...  

Abstract. A recent ocean modelling study indicates that possible changes in circulation may bring warm deep-ocean water into direct contact with the grounding lines of the Filchner–Ronne ice streams, suggesting the potential for future ice losses from this sector equivalent to ~0.3 m of sea-level rise. Significant advancements have been made in our knowledge of both the basal topography and ice velocity in the Weddell Sea sector, and the ability to accurately model marine ice sheet dynamics, thus enabling an assessment to be made of the relative sensitivities of the diverse collection of ice streams feeding the Filchner–Ronne Ice Shelf. Here we use the BISICLES ice sheet model, which employs adaptive-mesh refinement to resolve grounding line dynamics, to carry out such an assessment. The impact of realistic perturbations to the surface and sub-shelf mass balance forcing fields from our 2000-year "reference" model run indicate that both the Institute and Möller ice streams are highly sensitive to changes in basal melting either near to their respective grounding lines, or in the region of the ice rises within the Filchner–Ronne Ice Shelf. These same perturbations have little impact, however, on the Rutford, Carlson or Foundation ice streams, while the Evans Ice Stream is found to enter a phase of unstable retreat only after melt at its grounding line has increased by 50% of likely present-day values.


2020 ◽  
Vol 14 (4) ◽  
pp. 1245-1258
Author(s):  
Alanna V. Alevropoulos-Borrill ◽  
Isabel J. Nias ◽  
Antony J. Payne ◽  
Nicholas R. Golledge ◽  
Rory J. Bingham

Abstract. The response of ice streams in the Amundsen Sea Embayment (ASE) to future climate forcing is highly uncertain. Here we present projections of 21st century response of ASE ice streams to modelled local ocean temperature change using a subset of Coupled Model Intercomparison Project (CMIP5) simulations. We use the BISICLES adaptive mesh refinement (AMR) ice sheet model, with high-resolution grounding line resolving capabilities, to explore grounding line migration in response to projected sub-ice-shelf basal melting. We find a contribution to sea level rise of between 2.0 and 4.5 cm by 2100 under RCP8.5 conditions from the CMIP5 subset, where the mass loss response is linearly related to the mean ocean temperature anomaly. To account for uncertainty associated with model initialization, we perform three further sets of CMIP5-forced experiments using different parameterizations that explore perturbations to the prescription of initial basal melt, the basal traction coefficient and the ice stiffening factor. We find that the response of the ASE to ocean temperature forcing is highly dependent on the parameter fields obtained in the initialization procedure, where the sensitivity of the ASE ice streams to the sub-ice-shelf melt forcing is dependent on the choice of parameter set. Accounting for ice sheet model parameter uncertainty results in a projected range in sea level equivalent contribution from the ASE of between −0.02 and 12.1 cm by the end of the 21st century.


2019 ◽  
Author(s):  
Alanna V. Alevropoulos-Borrill ◽  
Isabel J. Nias ◽  
Antony J. Payne ◽  
Nicholas R. Golledge ◽  
Rory J. Bingham

Abstract. The response of ice streams in the Amundsen Sea Embayment (ASE) to future climate forcing is highly uncertain. Here we present projections of 21st century response of ASE ice streams to modelled local ocean temperature change using a subset of Coupled Model Intercomparison Project (CMIP5) simulations. We use the BISICLES adaptive mesh refinement (AMR) ice sheet model, with high resolution grounding line resolving capabilities, to explore grounding line migration in response to projected sub-ice shelf basal melting. We find a contribution to sea level rise of between 2.0 cm and 4.5 cm by 2100 under RCP8.5 conditions from the CMIP5 subset, where the mass loss response is linearly related to the mean ocean temperature anomaly. To account for uncertainty associated with model initialisation, we perform three further sets of CMIP5 forced experiments using different parameterisations that explore perturbations to the prescription of initial basal melt, the basal traction coefficient, and the ice stiffening factor. We find that the response of the ASE to ocean temperature forcing is highly dependent on the parameter fields obtained in the initialisation procedure, where the sensitivity of the ASE ice streams to the sub-ice shelf melt forcing is dependent on the choice of parameter set. Accounting for ice sheet model parameter uncertainty results in a projected range in sea level equivalent contribution from the ASE of between −0.02 cm and 12.1 cm by the end of the 21st century.


2016 ◽  
Vol 62 (233) ◽  
pp. 552-562 ◽  
Author(s):  
ISABEL J. NIAS ◽  
STEPHEN L. CORNFORD ◽  
ANTONY J. PAYNE

AbstractPresent-day mass loss from the West Antarctic ice sheet is centred on the Amundsen Sea Embayment (ASE), primarily through ice streams, including Pine Island, Thwaites and Smith glaciers. To understand the differences in response of these ice streams, we ran a perturbed parameter ensemble, using a vertically-integrated ice flow model with adaptive mesh refinement. We generated 71 sets of three physical parameters (basal traction coefficient, ice viscosity stiffening factor and sub-shelf melt rate), which we used to simulate the ASE for 50 years. We also explored the effects of different bed geometries and basal sliding laws. The mean rate of sea-level rise across the ensemble of simulations is comparable with current observed rates for the ASE. We found evidence that grounding line dynamics are sensitive to features in the bed geometry: simulations using BedMap2 geometry resulted in a higher rate of sea-level rise than simulations using a rougher geometry, created using mass conservation. Modelled grounding-line retreat of all the three ice streams was sensitive to viscosity and basal traction, while the melt rate was more important in Pine Island and Smith glaciers, which flow through more confined ice shelves than Thwaites, which has a relatively unconfined shelf.


2016 ◽  
Vol 57 (73) ◽  
pp. 1-9 ◽  
Author(s):  
S. L. Cornford ◽  
D. F. Martin ◽  
V. Lee ◽  
A. J. Payne ◽  
E. G. Ng

ABSTRACTAt least in conventional hydrostatic ice-sheet models, the numerical error associated with grounding line dynamics can be reduced by modifications to the discretization scheme. These involve altering the integration formulae for the basal traction and/or driving stress close to the grounding line and exhibit lower – if still first-order – error in the MISMIP3d experiments. MISMIP3d may not represent the variety of real ice streams, in that it lacks strong lateral stresses, and imposes a large basal traction at the grounding line. We study resolution sensitivity in the context of extreme forcing simulations of the entire Antarctic ice sheet, using the BISICLES adaptive mesh ice-sheet model with two schemes: the original treatment, and a scheme, which modifies the discretization of the basal traction. The second scheme does indeed improve accuracy – by around a factor of two – for a given mesh spacing, but $\lesssim 1$ km resolution is still necessary. For example, in coarser resolution simulations Thwaites Glacier retreats so slowly that other ice streams divert its trunk. In contrast, with $\lesssim 1$ km meshes, the same glacier retreats far more quickly and triggers the final phase of West Antarctic collapse a century before any such diversion can take place.


2012 ◽  
Vol 6 (3) ◽  
pp. 573-588 ◽  
Author(s):  
F. Pattyn ◽  
C. Schoof ◽  
L. Perichon ◽  
R. C. A. Hindmarsh ◽  
E. Bueler ◽  
...  

Abstract. Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.


2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


2018 ◽  
Author(s):  
David M. Rippin

Abstract. We present the first direct measurements of changes taking place at the base of the Getz Ice Shelf (GzIS) in West Antarctica. Our analysis is based on repeated airborne radio-echo sounding (RES) survey lines gathered in 2010 and 2014. We reveal that while there is significant variability in ice shelf behaviour, the vast majority of the ice shelf (where data is available) is undergoing basal thinning at a mean rate of nearly 13 m a−1, which is several times greater than recent modelling estimates. In regions of faster flowing ice close to where ice streams and outlet glaciers join the ice shelf, significantly greater rates of mass loss occurred. Since thinning is more pronounced close to faster-flowing ice, we propose that dynamic thinning processes may also contribute to mass loss here. Intricate sub-ice circulation patterns exist beneath the GzIS because of its complex sub-ice topography and the fact that it is fed by numerous ice streams and outlet glaciers. It is this complexity which we suggest is also responsible for the spatially variable patterns of ice-shelf change that we observe. The large changes observed here are also important when considering the likelihood and timing of any potential future collapse of the ice shelf, and the impact this would have on the flow rates of feeder ice streams and glaciers, that transmit ice from inland Antarctica to the coast. We propose that as the ice shelf continues to thin in response to warming ocean waters and climate, the response of the ice shelf will be spatially diverse. Given that these measurements represent changes that are significantly greater than modelling outputs, it is also clear that we still do not fully understand how ice shelves respond to warming ocean waters. As a result, ongoing direct measurements of ice shelf change are vital for understanding the future response of ice shelves under a warming climate.


2019 ◽  
Vol 12 (1) ◽  
pp. 215-232 ◽  
Author(s):  
Thiago Dias dos Santos ◽  
Mathieu Morlighem ◽  
Hélène Seroussi ◽  
Philippe Remy Bernard Devloo ◽  
Jefferson Cardia Simões

Abstract. Accurate projections of the evolution of ice sheets in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly capture fundamental physical processes, such as the evolution of the grounding line, the region where grounded ice starts to float. The evolution of the grounding line indeed plays a major role in ice sheet dynamics, as it is a fundamental control on marine ice sheet stability. Numerical modeling of a grounding line requires significant computational resources since the accuracy of its position depends on grid or mesh resolution. A technique that improves accuracy with reduced computational cost is the adaptive mesh refinement (AMR) approach. We present here the implementation of the AMR technique in the finite element Ice Sheet System Model (ISSM) to simulate grounding line dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test different refinement criteria: (a) distance around the grounding line, (b) a posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and (c) different combinations of (a) and (b). In both benchmarks, the ZZ error estimator presents high values around the grounding line. In the MISMIP+ setup, this estimator also presents high values in the grounded part of the ice sheet, following the complex shape of the bedrock geometry. The ZZ estimator helps guide the refinement procedure such that AMR performance is improved. Our results show that computational time with AMR depends on the required accuracy, but in all cases, it is significantly shorter than for uniformly refined meshes. We conclude that AMR without an associated error estimator should be avoided, especially for real glaciers that have a complex bed geometry.


Sign in / Sign up

Export Citation Format

Share Document