scholarly journals The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice

2014 ◽  
Vol 8 (1) ◽  
pp. 999-1022 ◽  
Author(s):  
D. Price ◽  
W. Rack ◽  
P. J. Langhorne ◽  
C. Haas ◽  
G. Leonard ◽  
...  

Abstract. This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice–ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the south-western Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that in close proximity to ice shelves this influence should be considered universally when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.

2014 ◽  
Vol 8 (3) ◽  
pp. 1031-1039 ◽  
Author(s):  
D. Price ◽  
W. Rack ◽  
P. J. Langhorne ◽  
C. Haas ◽  
G. Leonard ◽  
...  

Abstract. This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice–ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the southwestern Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that within 100 km of an ice shelf this influence might need to be considered when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.


2013 ◽  
Vol 25 (6) ◽  
pp. 821-831 ◽  
Author(s):  
A.J. Gough ◽  
A.R. Mahoney ◽  
P.J. Langhorne ◽  
T.G. Haskell

AbstractSea ice often forms attached to floating ice shelves. Accumulating snow can depress its freeboard, creating a flooded slush layer that may subsequently freeze to form snow ice, rejecting brine as it freezes. The resulting salinity profile determines the mechanical properties of the sea ice. We provide measurements of snow-loaded, multiyear sea ice from summer to winter. Brine from a slush layer is not completely expelled from the sea ice when the slush refreezes to form snow ice. Measurements of sea ice salinity and temperature indicate that the fate of this brine depends on the permeability of the sea ice below it. The sea ice in this study was also deformed by a nearby ice shelf over eleven years at a strain rate $$--&#x003E;&#x003C;$&#x003E; \dot{{\epsilon}} $$$ = (-8 ± 3) × 10-4 yr-1 (or 3 × 10-11 s-1). From transects of sea ice thickness and structure we estimate an effective Young's modulus at medium scales for sea ice mostly composed of snow ice of 0.1 GPa < E < 0.4 GPa, suggesting that this eleven year old sea ice cover has similar mechanical properties to warm first year sea ice. This is important for the parameterisations needed to simulate multiyear sea ice in the complex region near an ice shelf.


2012 ◽  
Vol 58 (207) ◽  
pp. 38-50 ◽  
Author(s):  
Alexander J. Gough ◽  
Andrew R. Mahoney ◽  
Pat J. Langhorne ◽  
Michael J.M. Williams ◽  
Natalie J. Robinson ◽  
...  

AbstractNear ice shelves around Antarctica the ocean becomes supercooled and has been observed to carry small suspended ice crystals. Our measurements demonstrate that these small crystals are persistently present in the water column beneath the winter fast ice, and when incorporated in sea ice they reduce the mean grain size of the sea-ice cover. By midwinter, larger ice crystals below the ice/water interface are observed to form a porous sub-ice platelet layer with an ice volume fraction of 0.25 ± 0.06. The magnitude and direction of the oceanic heat flux varied between (5 ± 6) Wm-2 (upwards) and (-15 ± 10) Wm-2 (downwards) in May, but by September it settled between (-6 ± 2) and (-11 ± 2) W m-2. The negative values imply that the ocean acts as a heat sink which is responsible for the growth of 12% of the ice thickness between June and September. This oceanic contribution should not be ignored in models of Antarctic sea-ice thickness close to an ice shelf.


2020 ◽  
Author(s):  
Gemma M. Brett ◽  
Daniel Price ◽  
Wolfgang Rack ◽  
Patricia J. Langhorne

Abstract. The outflow of supercooled Ice Shelf Water from the conjoined Ross and McMurdo ice shelf cavity augments fast ice thickness and forms a thick sub-ice platelet layer in McMurdo Sound. Here, we investigate whether the CryoSat-2 satellite radar altimeter can detect the higher freeboard caused by the thicker fast ice and the buoyant forcing of the sub-ice platelet layer beneath. Freeboards obtained from CryoSat-2 were compared with four years of drill hole measured sea ice freeboard, snow depth, and sea ice and sub-ice platelet layer thicknesses in McMurdo Sound in November of 2011, 2013, 2017 and 2018. The spatial distribution of higher CryoSat-2 freeboard concurred with the distributions of thicker ice shelf-influenced fast ice and the sub-ice platelet layer. The mean CryoSat-2 freeboard was 0.07–0.09 m higher over the main path of supercooled Ice Shelf Water outflow, in the centre of the sound, relative to the west and east. In this central region, the mean CryoSat-2 derived ice thickness was 35 % larger than the mean drill hole measured fast ice thickness. We attribute this overestimate in satellite altimeter obtained ice thickness to the additional buoyant forcing of the sub-ice platelet layer. We demonstrate the capability of CryoSat-2 to detect higher Ice Shelf Water influenced fast ice freeboard in McMurdo Sound and the wider application of this method as a potential tool to identify regions of ice shelf-influenced fast ice elsewhere on the Antarctic coastline.


2021 ◽  
Vol 15 (8) ◽  
pp. 4099-4115
Author(s):  
Gemma M. Brett ◽  
Daniel Price ◽  
Wolfgang Rack ◽  
Patricia J. Langhorne

Abstract. The outflow of supercooled Ice Shelf Water from the conjoined Ross and McMurdo ice shelf cavity augments fast ice thickness and forms a thick sub-ice platelet layer in McMurdo Sound. Here, we investigate whether the CryoSat-2 satellite radar altimeter can consistently detect the higher freeboard caused by the thicker fast ice combined with the buoyant forcing of a sub-ice platelet layer beneath. Freeboards obtained from CryoSat-2 were compared with 4 years of drill-hole-measured sea ice freeboard, snow depth, and sea ice and sub-ice platelet layer thicknesses in McMurdo Sound in November 2011, 2013, 2017 and 2018. The spatial distribution of higher CryoSat-2 freeboard concurred with the distributions of thicker ice-shelf-influenced fast ice and the sub-ice platelet layer. The mean CryoSat-2 freeboard was 0.07–0.09 m higher over the main path of supercooled Ice Shelf Water outflow, in the centre of the sound, relative to the west and east. In this central region, the mean CryoSat-2-derived ice thickness was 35 % larger than the mean drill-hole-measured fast ice thickness. We attribute this overestimate in satellite-altimeter-obtained ice thickness to the additional buoyant forcing of the sub-ice platelet layer which had a mean thickness of 3.90 m in the centre. We demonstrate the capability of CryoSat-2 to detect higher Ice Shelf Water-influenced fast ice freeboard in McMurdo Sound. Further development of this method could provide a tool to identify regions of ice-shelf-influenced fast ice elsewhere on the Antarctic coastline with adequate information on the snow layer.


1990 ◽  
Vol 14 ◽  
pp. 338
Author(s):  
H.H. Hellmer

The production of Antarctic Bottom Water is mainly influenced by Ice Shelf Water, which is formed through the modification of shelf water masses under huge ice shelves. To simulate this modification a two-dimensional thermohaline circulation model has been developed for a section perpendicular to the ice-shelf edge. Hydrographic data from the Filchner Depression enter into the model as boundary conditions. In the outflow region they also serve as a verification of model results. The standard solution reveals two circulation cells. The dominant one transports shelf water near the bottom toward the grounding line, where it begins to ascend along the inclined ice shelf. The contact with the ice shelf causes melting with a maximum rate of 1.5 m a−1 at the grounding line. Freezing and therefore the accumulation of “sea ice” at the bottom of the ice shelf occurs at the end of the melting zone at a rate on the order of 0.1 ma−1. Both rates are comparable with values estimated or predicted by models concerning ice-shelf dynamics. As one example of model sensitivity to changing boundary conditions, a higher sea-ice production in the southern Weddell Sea, as might be expected for a general climatic cooling event, is assumed. The resultant decrease/ increase in temperature/salinity of the inflow (Western Shelf Water) reduces the circulation under the ice shelf and therefore the outflow of Ice Shelf Water by 40%. The maximum melting and freezing rate decreases by 0.1 ma−1 and 0.01 m a−1, respectively. and the freezing zone shifts toward the grounding line by 100 km. In general the intensity of the circulation cells, the characteristics of Ice Shelf Water, the distribution of melting and freezing zones and the melting and freezing rates differ from the standard results with changing boundary conditions. These are the temperature and salinity of the inflow, the surface temperature at the top, and the extension and morphology of the ice shelf.


2003 ◽  
Vol 15 (1) ◽  
pp. 47-54 ◽  
Author(s):  
TINA TIN ◽  
MARTIN O. JEFFRIES ◽  
MIKKO LENSU ◽  
JUKKA TUHKURI

Ship-based observations of sea ice thickness using the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol provide information on ice thickness distribution at relatively low cost. This protocol uses a simple formula to calculate the mass of ice in ridges based on surface observations. We present two new formulae and compare these with results from the “Original” formula using data obtained in the Ross Sea in autumn and winter. The new “r-star” formula uses a more realistic ratio of sail and keel areas to transform dimensions of sails to estimates of mean keel areas. As a result, estimates of “equivalent thickness” (i.e. mean thickness of ice in ridged areas) increased by over 200%. The new “Probability” formula goes one step further, by incorporating the probability that a sail is associated with a keel underwater, and the probability that keels may be found under level surfaces. This resulted in estimates of equivalent thickness comparable with the Original formula. Estimates of equivalent thickness at one or two degree latitude resolution are sufficiently accurate for validating sea ice models. Although ridges are small features in the Ross Sea, we have shown that they constitute a significant fraction of the total ice mass.


2013 ◽  
Vol 36 (3) ◽  
pp. 202-220 ◽  
Author(s):  
Mary D. Stampone ◽  
Cathleen A. Geiger ◽  
Tracy L. DeLiberty ◽  
E. Rachel Bernstein

2018 ◽  
Author(s):  
Daniel Price ◽  
Iman Soltanzadeh ◽  
Wolfgang Rack

Abstract. Knowledge of the snow depth distribution on Antarctic sea ice is poor but is critical to obtaining sea ice thickness from satellite altimetry measurements of freeboard. We examine the usefulness of various snow products to provide snow depth information over Antarctic fast ice with a focus on a novel approach using a high-resolution numerical snow accumulation model (SnowModel). We compare this model to results from ECMWF ERA-Interim precipitation, EOS Aqua AMSR-E passive microwave snow depths and in situ measurements at the end of the sea ice growth season. The fast ice was segmented into three areas by fastening date and the onset of snow accumulation was calibrated to these dates. SnowModel falls within 0.02 m snow water equivalent (swe) of in situ measurements across the entire study area, but exhibits deviations of 0.05 m swe from these measurements in the east where large topographic features appear to have caused a positive bias in snow depth. AMSR-E provides swe values half that of SnowModel for the majority of the sea ice growth season. The coarser resolution ERA-Interim, not segmented for sea ice freeze up area reveals a mean swe value 0.01 m higher than in situ measurements. These various snow datasets and in situ information are used to infer sea ice thickness in combination with CryoSat-2 (CS-2) freeboard data. CS-2 is capable of capturing the seasonal trend of sea ice freeboard growth but thickness results are highly dependent on the assumptions involved in separating snow and ice freeboard. With various assumptions about the radar penetration into the snow cover, the sea ice thickness estimates vary by up to 2 m. However, we find the best agreement between CS-2 derived and in situ thickness when a radar penetration of 0.05-0.10 m into the snow cover is assumed.


2015 ◽  
Vol 9 (5) ◽  
pp. 4893-4923 ◽  
Author(s):  
S. Schwegmann ◽  
E. Rinne ◽  
R. Ricker ◽  
S. Hendricks ◽  
V. Helm

Abstract. Knowledge about Antarctic sea-ice volume and its changes over the past decades has been sparse due to the lack of systematic sea-ice thickness measurements in this remote area. Recently, first attempts have been made to develop a sea-ice thickness product over the Southern Ocean from space-borne radar altimetry and results look promising. Today, more than 20 years of radar altimeter data are potentially available for such products. However, data come from different sources, and the characteristics of individual sensors differ. Hence, it is important to study the consistency between single sensors in order to develop long and consistent time series over the potentially available measurement period. Here, the consistency between freeboard measurements of the Radar Altimeter 2 on-board Envisat and freeboard measurements from the Synthetic-Aperture Interferometric Radar Altimeter on-board CryoSat-2 is tested for their overlap period in 2011. Results indicate that mean and modal values are comparable over the sea-ice growth season (May–October) and partly also beyond. In general, Envisat data shows higher freeboards in the seasonal ice zone while CryoSat-2 freeboards are higher in the perennial ice zone and near the coasts. This has consequences for the agreement in individual sectors of the Southern Ocean, where one or the other ice class may dominate. Nevertheless, over the growth season, mean freeboard for the entire (regional separated) Southern Ocean differs generally by not more than 2 cm (5 cm, except for the Amundsen/Bellingshausen Sea) between Envisat and CryoSat-2, and the differences between modal freeboard lie generally within ±10 cm and often even below.


Sign in / Sign up

Export Citation Format

Share Document