scholarly journals Inter-annual variability of wind climates and wind turbine annual energy production

2018 ◽  
Author(s):  
Sara C. Pryor ◽  
Tristan J. Shepherd ◽  
Rebecca J. Barthelmie

Abstract. Inter-annual variability (IAV) of expected annual energy production (AEP) from proposed wind farms plays a key role in dictating project financing. IAV in pre-construction projected AEP and the difference in 50th and 90th percentile (P50 and P90) AEP derives in part from variability in wind climates. However, the magnitude of IAV in wind speeds at/close to wind turbine hub-heights is poorly constrained and maybe overestimated by the 6 % standard deviation of annual mean wind speeds that is widely applied within the wind energy industry. Thus there is a need for improved understanding of the long-term wind resource and the inter-annual variability therein in order to generate more robust predictions of the financial value of a wind energy project. Long-term simulations of wind speeds near typical wind turbine hub-heights over the eastern USA indicate median gross capacity factors (computed using 10-minute wind speeds close to wind turbine hub-heights and the power curve of the most common wind turbine deployed in the region) that are in good agreement with values derived from operational wind farms. The IAV of annual mean wind speeds at/near to typical wind turbine hub-heights in these simulations is lower than is implied by assuming a standard deviation of 6 %. Indeed, rather than in 9 in 10 years exhibiting AEP within 0.9 and 1.1 times the long-term mean AEP, results presented herein indicate that over 90 % of the area in the eastern USA that currently has operating wind turbines simulated AEP lies within 0.94 and 1.06 of the long-term average. Further, IAV of estimated AEP is not substantially larger than IAV in mean wind speeds. These results indicate it may be appropriate to reduce the IAV applied to pre-construction AEP estimates to account for variability in wind climates, which would decrease the cost of capital for wind farm developments.

2018 ◽  
Vol 3 (2) ◽  
pp. 651-665 ◽  
Author(s):  
Sara C. Pryor ◽  
Tristan J. Shepherd ◽  
Rebecca J. Barthelmie

Abstract. The interannual variability (IAV) of expected annual energy production (AEP) from proposed wind farms plays a key role in dictating project financing. IAV in preconstruction projected AEP and the difference in 50th and 90th percentile (P50 and P90) AEP derive in part from variability in wind climates. However, the magnitude of IAV in wind speeds at or close to wind turbine hub heights is poorly defined and may be overestimated by assuming annual mean wind speeds are Gaussian distributed with a standard deviation (σ) of 6 %, as is widely applied within the wind energy industry. There is a need for improved understanding of the long-term wind resource and the IAV therein in order to generate more robust predictions of the financial value of a wind energy project. Long-term simulations of wind speeds near typical wind turbine hub heights over the eastern USA indicate median gross capacity factors (computed using 10 min wind speeds close to wind turbine hub heights and the power curve of the most common wind turbine deployed in the region) that are in good agreement with values derived from operational wind farms. The IAV of annual mean wind speeds at or near typical wind turbine hub heights in these simulations and AEP computed using the power curve of the most commonly deployed wind turbine is lower than is implied by assuming σ=6 %. Indeed, rather than 9 out of 10 years exhibiting AEP within 0.9 and 1.1 times the long-term mean AEP as implied by assuming a Gaussian distribution with σ of 6 %, the results presented herein indicate that in over 90 % of the area in the eastern USA that currently has operating wind turbines, simulated AEP lies within 0.94 and 1.06 of the long-term average. Further, the IAV of estimated AEP is not substantially larger than IAV in mean wind speeds. These results indicate it may be appropriate to reduce the IAV applied to preconstruction AEP estimates to account for variability in wind climates, which would decrease the cost of capital for wind farm developments.


2020 ◽  
Vol 184 ◽  
pp. 01094
Author(s):  
C Lavanya ◽  
Nandyala Darga Kumar

Wind energy is the renewable sources of energy and it is used to generate electricity. The wind farms can be constructed on land and offshore where higher wind speeds are prevailing. Most offshore wind farms employ fixed-foundation wind turbines in relatively shallow water. In deep waters floating wind turbines have gained popularity and are recent development. This paper discusses the various types of foundations which are in practice for use in wind turbine towers installed on land and offshore. The applicability of foundations based on depth of seabed and distance of wind farm from the shore are discussed. Also, discussed the improvement methods of weak or soft soils for the foundations of wind turbine towers.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yiannis A. Katsigiannis ◽  
George S. Stavrakakis ◽  
Christodoulos Pharconides

This paper examines the effect of different wind turbine classes on the electricity production of wind farms in two areas of Cyprus Island, which present low and medium wind potentials: Xylofagou and Limassol. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from five different manufacturers have been used. For each manufacturer, two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC II and IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (IEC III class) in both locations, in terms of energy production. This improvement is higher for the location with the lower wind potential and starts from 7%, while it can reach more than 50%.


2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


2020 ◽  
Vol 12 (14) ◽  
pp. 5761 ◽  
Author(s):  
Chakib El Mokhi ◽  
Adnane Addaim

Wind energy is currently one of the fastest-growing renewable energy sources in the world. For this reason, research on methods to render wind farms more energy efficient is reasonable. The optimization of wind turbine positions within wind farms makes the exploitation of wind energy more efficient and the wind farms more competitive with other energy resources. The investment costs alone for substation and electrical infrastructure for offshore wind farms run around 15–30% of the total investment costs of the project, which are considered high. Optimizing the substation location can reduce these costs, which also minimizes the overall cable length within the wind farm. In parallel, optimizing the cable routing can provide an additional benefit by finding the optimal grid network routing. In this article, the authors show the procedure on how to create an optimized wind farm already in the design phase using metaheuristic algorithms. Besides the optimization of wind turbine positions for more energy efficiency, the optimization methods of the substation location and the cable routing for the collector system to avoid cable losses are also presented.


2020 ◽  
pp. 0309524X2092540
Author(s):  
Addisu Dagne Zegeye

Although Ethiopia does not have significant fossil fuel resource, it is endowed with a huge amount of renewable energy resources such as hydro, wind, geothermal, and solar power. However, only a small portion of these resources has been utilized so far and less than 30% of the nation’s population has access to electricity. The wind energy potential of the country is estimated to be up to 10 GW. Yet less than 5% of this potential is developed so far. One of the reasons for this low utilization of wind energy in Ethiopia is the absence of a reliable and accurate wind atlas and resource maps. Development of reliable and accurate wind atlas and resource maps helps to identify candidate sites for wind energy applications and facilitates the planning and implementation of wind energy projects. The main purpose of this research is to assess the wind energy potential and model wind farm in the Mossobo-Harena site of North Ethiopia. In this research, wind data collected for 2 years from Mossobo-Harena site meteorological station were analyzed using different statistical software to evaluate the wind energy potential of the area. Average wind speed and power density, distribution of the wind, prevailing direction, turbulence intensity, and wind shear profile of the site were determined. Wind Atlas Analysis and Application Program was used to generate the generalized wind climate of the area and develop resource maps. Wind farm layout and preliminary turbine micro-sitting were done by taking various factors into consideration. The IEC wind turbine class of the site was determined and an appropriate wind turbine for the study area wind climate was selected and the net annual energy production and capacity factor of the wind farm were determined. The measured data analysis conducted indicates that the mean wind speed at 10 and 40 m above the ground level is 5.12 and 6.41 m/s, respectively, at measuring site. The measuring site’s mean power density was determined to be 138.55 and 276.52 W/m2 at 10 and 40 m above the ground level, respectively. The prevailing wind direction in the site is from east to south east where about 60% of the wind was recorded. The resource grid maps developed by Wind Atlas Analysis and Application Program on a 10 km × 10 km area at 50 m above the ground level indicate that the selected study area has a mean wind speed of 5.58 m/s and a mean power density of 146 W/m2. The average turbulence intensity of the site was found to be 0.136 at 40 m which indicates that the site has a moderate turbulence level. According to the resource assessment done, the area is classified as a wind Class IIIB site. A 2-MW rated power ENERCON E-82 E2 wind turbine which is an IEC Class IIB turbine with 82 m rotor diameter and 98 m hub height was selected for estimation of annual energy production on the proposed wind farm. 88 ENERCON E-82 E2 wind turbines were properly sited in the wind farm with recommended spacing between the turbines so as to reduce the wake loss. The rated power of the wind farm is 180.4 MW and the net annual energy production and capacity factor of the proposed wind farm were determined to be 434.315 GWh and 27.48% after considering various losses in the wind farm.


2018 ◽  
Vol 64 ◽  
pp. 06010
Author(s):  
Bachhal Amrender Singh ◽  
Vogstad Klaus ◽  
Lal Kolhe Mohan ◽  
Chougule Abhijit ◽  
Beyer Hans George

There is a big wind energy potential in supplying the power in an island and most of the islands are off-grid. Due to the limited area in island(s), there is need to find appropriate layout / location for wind turbines suited to the local wind conditions. In this paper, we have considered the wind resources data of an island in Trøndelag region of the Northern Norway, situated on the coastal line. The wind resources data of this island have been analysed for wake losses and turbulence on wind turbines for determining appropriate locations of wind turbines in this island. These analyses are very important for understanding the fatigue and mechanical stress on the wind turbines. In this work, semi empirical wake model has been used for wake losses analysis with wind speed and turbine spacings. The Jensen wake model used for the wake loss analysis due to its high degree of accuracy and the Frandsen model for characterizing the turbulent loading. The variations of the losses in the wind energy production of the down-wind turbine relative to the up-wind turbine and, the down-stream turbulence have been analysed for various turbine distances. The special emphasis has been taken for the case of wind turbine spacing, leading to the turbulence conditions for satisfying the IEC 61400-1 conditions to find the wind turbine layout in this island. The energy production of down-wind turbines has been decreased from 2 to 20% due to the lower wind speeds as they are located behind up-wind turbine, resulting in decreasing the overall energy production of the wind farm. Also, the higher wake losses have contributed to the effective turbulence, which has reduced the overall energy production from the wind farm. In this case study, the required distance for wind turbines have been changed to 6 rotor diameters for increasing the energy gain. From the results, it has been estimated that the marginal change in wake losses by moving the down-stream wind turbine by one rotor diameter distance has been in the range of 0.5 to 1% only and it is insignificant. In the full-length paper, the wake effects with wind speed variations and the wind turbine locations will be reported for reducing the wake losses on the down-stream wind turbine. The Frandsen model has been used for analysing turbulence loading on the down-stream wind turbine as per IEC 61400-1 criteria. In larger wind farms, the high turbulence from the up-stream wind turbines increases the fatigues on the turbines of the wind farm. In this work, we have used the effective turbulence criteria at a certain distance between up-stream and down-stream turbines for minimizing the fatigue load level. The sensitivity analysis on wake and turbulence analysis will be reported in the full-length paper. Results from this work will be useful for finding wind farm layouts in an island for utilizing effectively the wind energy resources and electrification using wind power plants.


2020 ◽  
Vol 59 (1) ◽  
pp. 153-174 ◽  
Author(s):  
Sara C. Pryor ◽  
Tristan J. Shepherd ◽  
Patrick J. H. Volker ◽  
Andrea N. Hahmann ◽  
Rebecca J. Barthelmie

AbstractHigh-resolution simulations are conducted with the Weather Research and Forecasting Model to evaluate the sensitivity of wake effects and power production from two wind farm parameterizations [the commonly used Fitch scheme and the more recently developed Explicit Wake Parameterization (EWP)] to the resolution at which the model is applied. The simulations are conducted for a 9-month period for a domain encompassing much of the U.S. Midwest. The two horizontal resolutions considered are 4 km × 4 km and 2 km × 2 km grid cells, and the two vertical discretizations employ either 41 or 57 vertical layers (with the latter having double the number in the lowest 1 km). Higher wind speeds are observed close to the wind turbine hub height when a larger number of vertical layers are employed (12 in the lowest 200 m vs 6), which contributes to higher power production from both wind farm schemes. Differences in gross capacity factors for wind turbine power production from the two wind farm parameterizations and with resolution are most strongly manifest under stable conditions (i.e., at night). The spatial extent of wind farm wakes when defined as the area affected by velocity deficits near to wind turbine hub heights in excess of 2% of the simulation without wind turbines is considerably larger in simulations with the Fitch scheme. This spatial extent is generally reduced by increasing the horizontal resolution and/or increasing the number of vertical levels. These results have important applications to projections of expected annual energy production from new wind turbine arrays constructed in the wind shadow from existing wind farms.


2021 ◽  
pp. 0309524X2110351
Author(s):  
Abeba Debru ◽  
Mulu Bayray ◽  
Marta Molinas

The objective of this paper was to assess the performance of the Adama-II Wind Farm in comparison to the feasibility study. Using 1-year mast data, the site potential was reassessed by WAsP software and the performance of wind turbine generators was assessed by 2 years of SCADA data. The obtained mean annual wind speed and power density were 7.75 m/s, and 462 W/m2 while in the feasibility study, 9.55 m/s, and 634.6 W/m2, which resulted in 18.8%, and 27.1% deviations respectively. The prevailing and secondary wind directions obtained were ENE and NE with 35.7% and 19.1% while, in the feasibility study, ENE with 36.5% and E with 17.3%. From the SCADA data, the Capacity factor, Annual Energy Production (AEP), and Availability of wind turbines were determined as 30.5%, 398 GWh, and 95.1%. The reasons for the deviation were difference in long-term correction data and weather conditions during study period.


2018 ◽  
Author(s):  
Joseph C. Y. Lee ◽  
M. Jason Fields ◽  
Julie K. Lundquist

Abstract. Because wind resources vary from year to year, the inter-monthly and inter-annual variability (IAV) of wind speed is a key component of the overall uncertainty in the wind resource assessment process thereby causing challenges to wind-farm operators and owners. We present a critical assessment of several common approaches for calculating variability by applying each of the methods to the same 37-year monthly wind-speed and energy-production time series to highlight the differences between these methods. We then assess the accuracy of the variability calculations by correlating the wind-speed variability estimates to the variabilities of actual wind-farm energy production. We recommend the Robust Coefficient of Variation (RCoV) for systematically estimating variability, and we underscore its advantages as well as the importance of using a statistically robust and resistant method. Using normalized spread metrics, including RCoV, high variability of monthly mean wind speeds at a location effectively denotes strong fluctuations of monthly total energy generations, and vice versa. Meanwhile, the wind-speed IAVs computed with annual-mean data fail to adequately represent energy-production IAVs of wind farms. Finally, we find that estimates of energy-generation variability require 10 ± 3 years of monthly mean wind-speed records to achieve 90 % statistical confidence. This paper also provides guidance on the spatial distribution of wind-speed RCoV.


Sign in / Sign up

Export Citation Format

Share Document