scholarly journals A Method for Preliminary Rotor Design – Part 1: Radially Independent Actuator Disk model

2020 ◽  
Author(s):  
Kenneth Loenbaek ◽  
Christian Bak ◽  
Jens I. Madsen ◽  
Michael McWilliam

Abstract. We present an analytical model for assessing the aerodynamic performance of a wind turbine rotor though a different parametrization of the the classical Blade Element Momentum (BEM) model. The model is named the Radially Independent Actuator Disc model (RIAD) and it establishes an analytical relationship between the local-thrust loading and the local-power, known as the Local-Thrust-Coefficient and the Local-Power-Coefficient respectively. The model has a direct physical interpretation, showing the contribution for each of the 3 losses: wake-rotation-loss, tip-loss and viscous-loss. The gradients for RIAD is found through the use of the Complex-step-method and power optimization is used to show how easily the method can be used for rotor optimization. The main benefit of RIAD is the ease at which it can be applied for rotor optimization, and especially load constraint power optimization as it is described in Loenbaek et al. (2020). The relationship between the RIAD input and the rotor chord and twist is established and it is validate against a BEM solver.

2021 ◽  
Vol 6 (3) ◽  
pp. 903-915 ◽  
Author(s):  
Kenneth Loenbaek ◽  
Christian Bak ◽  
Jens I. Madsen ◽  
Michael McWilliam

Abstract. We present an analytical model for assessing the aerodynamic performance of a wind turbine rotor through a different parametrization of the classical blade element momentum (BEM) model. The model is named the Radially Independent Actuator Disc (RIAD) model, and it establishes an analytical relationship between the local thrust loading and the local power, known as the local-thrust coefficient and the local-power coefficient respectively. The model has a direct physical interpretation, showing the contribution for each of the three losses: wake rotation loss, tip loss and viscous loss. The gradient for RIAD is found through the use of the complex step method, and power optimization is used to show how easily the method can be used for rotor optimization. The main benefit of RIAD is the ease with which it can be applied for rotor optimization and especially load constraint power optimization as described in Loenbaek et al. (2021). The relationship between the RIAD input and the rotor chord and twist is established, and it is validated against a BEM solver.


2018 ◽  
Vol 1 (1 (Aug)) ◽  
pp. 41-50 ◽  
Author(s):  
P. Modali ◽  
N. S. Kolekar ◽  
A. Banerjee

In tidal streams and rivers, the flow of water can be at yaw to the turbine rotor plane causing performance degradation and a skewed downstream wake. The current study aims to quantify the performance variation and associated wake behavior caused by a tidal turbine operating in a yawed inflow environment. A three-dimensional computational fluid dynamics study was carried out using multiple reference frame approach using κ-ω SST turbulence model with curvature correction. The computations were validated by comparison with experimental results on a 1:20 scale prototype for a 0° yaw case performed in a laboratory flume. The simulations were performed using a three-bladed, constant chord, untwisted tidal turbine operating at uniform inflow. Yaw effects were observed for angles ranging from 5° to 15°. An increase in yaw over this range caused a power coefficient deficit of 26% and a thrust coefficient deficit of about 8% at a tip speed ratio of 5 that corresponds to the maximum power coefficient for the tested turbine. In addition, wake propagation was studied up to a downstream distance of ten rotor radius, and skewness in the wake, proportional to yaw angle was observed. At higher yaw angles, the flow around the turbine rotor was found to cushion the tip vortices, accelerating the interaction between the tip vortices and the skewed wake, thereby facilitating a faster wake recovery. The center of the wake was tracked using a center of mass technique. The center of wake analysis was used to better quantify the deviation of the wake with increasing yaw angle. It was observed that with an increase in yaw angle, the recovery distance moved closer to the rotor plane. The wake was noticed to meander around the turbine centerline with increasing downstream distance and slightly deviate towards the free surface above the turbine centerline, magnitude of which varied depending on yaw.


2017 ◽  
Author(s):  
Nojan Bagheri-Sadeghi ◽  
Brian T. Helenbrook ◽  
Kenneth D. Visser

Abstract. The design of a ducted wind turbine modeled using an actuator disc was studied using RANS CFD simulations. The design variables included the rotor thrust coefficient, the angle of attack of the duct cross-section, the radial gap between the rotor and the duct, and the axial location of the rotor in the duct. Two different power coefficients, the rotor power coefficient (based on the rotor swept area) and the total power coefficient (based on the exit area of the duct) were used as optimization objectives. The optimal value of thrust coefficients for all designs was nearly constant having a value between 0.9 and 1. The rotor power coefficient was sensitive to rotor gap but was insensitive to the rotor's axial location for positions ranging from upstream of the throat to nearly half the distance down the duct. Compared to the design that maximized rotor power coefficient, the design for maximal total power coefficient was characterized by a smaller angle of attack, a smaller rotor gap and a downstream placement of the rotor. The insensitivity of power output to the rotor position implies that a rotor placed further downstream in the duct could produce the same power with a considerably smaller duct exit area and thus a greater total power coefficient. The design for that maximized total power coefficient exceeded Betz's limit with a total power coefficient of 0.67.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 745
Author(s):  
Francesco Castellani ◽  
Abdelgalil Eltayesh ◽  
Matteo Becchetti ◽  
Antonio Segalini

The aerodynamics of a rotor with pitch imbalance has been investigated experimentally and numerically in the present work. The comparison of mean velocity and turbulence intensity in the balanced and unbalanced cases indicated that a pitch imbalance modifies both the mean velocity and the turbulent activity; the latter is weakly increased by the imbalance. Spectral analysis indicated that the dynamics of the wake is also affected by the pitch imbalance since the tip vortices loose strength and disorganise more quickly than in the balanced case. The pitch imbalance has, however, a detrimental effect on the power coefficient and it affects the thrust coefficient as well. Only the blade affected by the imbalance shows significant modifications of the applied load, while the other blades operate with the same loading conditions.


2018 ◽  
Vol 3 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Nojan Bagheri-Sadeghi ◽  
Brian T. Helenbrook ◽  
Kenneth D. Visser

Abstract. The design of a ducted wind turbine modeled using an actuator disc was studied using Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) simulations. The design variables included the rotor thrust coefficient, the angle of attack of the duct cross section, the radial gap between the rotor and the duct, and the axial location of the rotor in the duct. Two different power coefficients, the rotor power coefficient (based on the rotor swept area) and the total power coefficient (based on the exit area of the duct), were used as optimization objectives. The optimal value of thrust coefficients for all designs was nearly constant, having a value between 0.9 and 1. The rotor power coefficient was sensitive to rotor gap but was insensitive to the rotor's axial location for positions ranging from upstream of the throat to nearly half the distance down the duct. Compared to the design that maximized rotor power coefficient, the design for maximal total power coefficient was characterized by a smaller angle of attack, a smaller rotor gap, and a downstream placement of the rotor. The insensitivity of power output to the rotor position implies that a rotor placed further downstream in the duct could produce the same power with a considerably smaller duct exit area and thus a greater total power coefficient. The design for that maximized total power coefficient exceeded Betz's limit with a total power coefficient of 0.67.


2021 ◽  
Vol 927 ◽  
Author(s):  
D. Dehtyriov ◽  
A.M. Schnabl ◽  
C.R. Vogel ◽  
S. Draper ◽  
T.A.A. Adcock ◽  
...  

The limit of power extraction by a device which makes use of constructive interference, i.e. local blockage, is investigated theoretically. The device is modelled using actuator disc theory in which we allow the device to be split into arrays and these then into sub-arrays an arbitrary number of times so as to construct an $n$ -level multi-scale device in which the original device undergoes $n-1$ sub-divisions. The alternative physical interpretation of the problem is a planar system of arrayed turbines in which groups of turbines are homogeneously arrayed at the smallest $n\mathrm {th}$ scale, and then these groups are homogeneously spaced relative to each other at the next smallest $n-1\mathrm {th}$ scale, with this pattern repeating at all subsequent larger scales. The scale-separation idea of Nishino & Willden (J. Fluid. Mech., vol. 708, 2012b, pp. 596–606) is employed, which assumes mixing within a sub-array occurs faster than mixing of the by-pass flow around that sub-array, so that in the $n$ -scale device mixing occurs from the inner scale to the outermost scale in that order. We investigate the behaviour of an arbitrary level multi-scale device, and determine the arrangement of actuator discs ( $n\mathrm {th}$ level devices) which maximises the power coefficient (ratio of power extracted to undisturbed kinetic energy flux through the net disc frontal area). We find that this optimal arrangement is close to fractal, and fractal arrangements give similar results. With the device placed in an infinitely wide channel, i.e. zero global blockage, we find that the optimum power coefficient tends to unity as the number of device scales tends to infinity, a 27/16 increase over the Lanchester–Betz limit of $0.593$ . For devices in finite width channels, i.e. non-zero global blockage, similar observations can be made with further uplift in the maximum power coefficient. We discuss the fluid mechanics of this energy extraction process and examine the scale distribution of thrust and wake velocity coefficients. Numerical demonstration of performance uplift due to multi-scale dynamics is also provided. We demonstrate that bypass flow remixing and ensuing energy losses increase the device power coefficient above the limits for single devices, so that although the power coefficient can be made to increase, this is at the expense of the overall efficiency of energy extraction which decreases as wake-scale remixing losses necessarily rise. For multi-scale devices in finite overall blockage two effects act to increase extractable power; an overall streamwise pressure gradient associated with finite blockage, and wake pressure recoveries associated with bypass-scale remixing.


Author(s):  
Paul Schünemann ◽  
Timo Zwisele ◽  
Frank Adam ◽  
Uwe Ritschel

Floating wind turbine systems will play an important role for a sustainable energy supply in the future. The dynamic behavior of such systems is governed by strong couplings of aerodynamic, structural mechanic and hydrodynamic effects. To examine these effects scaled tank tests are an inevitable part of the design process of floating wind turbine systems. Normally Froude scaling is used in tank tests. However, using Froude scaling also for the wind turbine rotor will lead to wrong aerodynamic loads compared to the full-scale turbine. Therefore the paper provides a detailed description of designing a modified scaled rotor blade mitigating this problem. Thereby a focus is set on preserving the tip speed ratio of the full scale turbine, keeping the thrust force behavior of the full scale rotor also in model scale and additionally maintaining the power coefficient between full scale and model scale. This is achieved by completely redesigning the original blade using a different airfoil. All steps of this redesign process are explained using the example of the generic DOWEC 6MW wind turbine. Calculations of aerodynamic coefficients are done with the software tools XFoil and AirfoilPrep and the resulting thrust and power coefficients are obtained by running several simulations with the software AeroDyn.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Nur Alom ◽  
Ujjwal K. Saha

The design and development of wind turbines is increasing throughout the world to offer electricity without paying much to the global warming. The Savonius wind turbine rotor, or simply the Savonius rotor, is a drag-based device that has a relatively low efficiency. A high negative torque produced by the returning blade is a major drawback of this rotor. Despite having a low efficiency, its design simplicity, low cost, easy installation, good starting ability, relatively low operating speed, and independency to wind direction are its main rewards. With the goal of improving its power coefficient (CP), a considerable amount of investigation has been reported in the past few decades, where various design modifications are made by altering the influencing parameters. Concurrently, various augmentation techniques have also been used to improve the rotor performance. Such augmenters reduce the negative torque and improve the self-starting capability while maintaining a high rotational speed of the rotor. The CP of the conventional Savonius rotors lie in the range of 0.12–0.18, however, with the use of augmenters, it can reach up to 0.52 with added design complexity. This paper attempts to give an overview of the various augmentation techniques used in Savonius rotor over the last four decades. Some of the key findings with the use of these techniques have been addressed and makes an attempt to highlight the future direction of research.


Author(s):  
Rodolfo Bontempo ◽  
Marcello Manna

The paper provides an evaluation of the errors embodied in the Axial Momentum Theory (AMT) as applied to a uniformly loaded actuator disk model without wake rotation. Although this model exhibits some unphysical features, such as the tip singularity and the violation of the angular momentum equation, it is still considered a touchstone in the theoretical aerodynamics of propellers. To simplify the model, a purely mathematical assumption is commonly used in the differential form of the axial momentum equation, i.e., the contribution of the pressure forces on the lateral surface of the infinitesimal streamtubes swallowed by the disk is neglected. In this paper, the errors introduced by this simplifying assumption are evaluated by comparing the results of the AMT with those of a nonlinear method modelling the free wake as the superposition of ring vortices distributed along the wake boundary. Firstly, the validity of this method is verified in terms of global performance coefficients. Then, using a CFD approach, it is also verified in terms of local flow quantities. The comparison between the ring-vortices method and the AMT shows that, for a highly loaded propeller, significant errors exist in the axial velocity at the disk, especially near the tip. Moreover, despite the uniform load, the axial velocity at the disk varies in the radial direction. Instead, the velocity magnitude remains almost uniform only for values of the thrust coefficient lower than 1.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1338
Author(s):  
Woo-Yul Kim ◽  
Santhosh Senguttuvan ◽  
Sung-Min Kim

The aerodynamic performance of a counter-rotating ducted fan in hover mode is numerically analyzed for different rotor spacings and duct diffusion angles. The design of the counter-rotating fan is inspired by a custom-designed single rotor ducted fan used in a previous study. The numerical model to predict the aerodynamic performance of the counter-rotating ducted fan is developed by adopting the frozen rotor approach for steady-state incompressible flow conditions. The relative angle between the front and the rear rotor is examined due to the usage of the frozen rotor model. The results show that the variation of thrust for the different relative angles is extremely low. The aerodynamic performances are evaluated by comparing the thrust, thrust coefficient, power coefficient, and figure of merit (FOM). The thrust, thrust coefficient, and FOM slightly increase with increasing rotor spacing up to 200 mm, regardless of the duct diffusion angle, and reduce on further increase in the rotor spacing. The duct diffusion angle of 0° generates about 9% higher thrust and increases the FOM by 6.7%, compared with the 6° duct diffusion angle. The duct diffusion angle is highly effective in improving the thrust and FOM of the counter-rotating ducted fan, rather than the rotor spacing.


Sign in / Sign up

Export Citation Format

Share Document