scholarly journals A Simplified, Efficient Approach to Hybrid Wind and Solar Plant Site Optimization

2021 ◽  
Author(s):  
Charles Tripp ◽  
Darice Guittet ◽  
Jennifer King ◽  
Aaron Barker

Abstract. Wind plant layout optimization is a difficult, complex problem with a large number of variables and many local minima. Layout optimization only becomes more difficult with the addition of solar generation. In this paper, we propose a parameterized approach to wind and solar hybrid power plant layout optimization that greatly reduces problem dimensionality while guaranteeing that the generated layouts have a desirable regular structure. We argue that the evolution strategies class of derivative-free optimization methods is well-suited to the parameterized hybrid layout problem, and we demonstrate how hard layout constraints (e.g. placement restrictions) can be transformed into soft constraints that are amenable to optimization using evolution strategies. Next, we present experimental results on four test sites, demonstrating the viability, reliability, and effectiveness of the parameterized ES approach for generating optimized hybrid plant layouts. Completing the tool kit for parameterized ES layout generation, we include a brief tutorial describing how the parameterized ES approach can be inspected, understood, and debugged when applied to hybrid plant layouts.

2019 ◽  
Vol 8 (4) ◽  
pp. 9449-9456

This paper proposes the reliability index of wind-solar hybrid power plants using the expected energy not supplied method. The location of this research is wind-solar hybrid power plants Pantai Baru, Bantul, Special Region of Yogyakarta, Indonesia. The method to determine the reliability of the power plant is the expected energy not supplied (EENS) method. This analysis used hybrid plant operational data in 2018. The results of the analysis have been done on the Pantai Baru hybrid power plant about reliability for electric power systems with EENS. The results of this study can be concluded that based on the load duration curve, loads have a load more than the operating kW of the system that is 99 kW. In contrast, the total power contained in the Pantai Baru hybrid power plant is 90 kW. This fact makes the system forced to release the load. The reliability index of the power system in the initial conditions, it produces an EENS value in 2018, resulting in a total value of 2,512% or 449 kW. The EENS value still does not meet the standards set by the National Electricity Market (NEM), which is <0.002% per year. Based on this data, it can be said that the reliability of the New Coast hybrid power generation system in 2018 is in the unreliable category.


2013 ◽  
Vol 860-863 ◽  
pp. 2040-2045 ◽  
Author(s):  
Xiao Hua Feng ◽  
Yu Yao He ◽  
Juan Yu

This paper presents a novel modified bacterial foraging optimization(BFO) to solve economic loaddispatch (ELD) problems. BFO isalready successfully employed to solve variousoptimization problems. However original BFOfor small problems with moderate dimensionand searching space is satisfactory. As searchspace and complexity growexponentially in scalable ELD problems, it shows poorconvergence properties. To tackle this complex problem considering itshigh-dimensioned search space, the Evolution Strategies is introduced to thebasic BFO. The chemotactic step is adjusted to have a dynamic non-linearbehavior in order to improve balancing the global and local search. Theproposed algorithm is validated using several thermal generation test systems.The results are compared with those obtained by other algorithms previouslyapplied to solve the problem considering valve-point effects and power losses.


2002 ◽  
Vol 42 (2) ◽  
pp. 251-263 ◽  
Author(s):  
Subramanian Vallapuzha ◽  
Edward C De Meter ◽  
Shabbir Choudhuri ◽  
Raghunath P Khetan

2019 ◽  
Vol 17 (10) ◽  
pp. 1724-1732
Author(s):  
Marcus Vinicius de Souza ◽  
Beatriz Souza Leite Pires De Lima ◽  
Juliana Souza Baioco

2005 ◽  
Author(s):  
A. V. Soudarev ◽  
A. A. Souryaninov ◽  
V. G. Konakov ◽  
A. S. Molchanov

As analysis of thermal-technical parameters of the existing polymer exchange membrane fuel cells (PEMFC) indicated, their electrical efficiency is not above 32–37% which is due to relatively high (10–15%) electric power consumption to cover own needs. Its major percentage falls on pump and compressor drive (air, fuel, water supply) using the AC electric engines connected via converter to FC. A real alternative allowing the efficiency increase up to 45% and higher is to apply hybrid plants when an AC turboelectric generator (TEG) is built into the thermodynamic cycle, the latter operating at the expense of utilization of the FC reagent stream power. TEG is a micro turbocompressor with incorporated turbo generator manufactured on the basis of the micro electric-mechanical system (MEMS) technology. The numerical study over the hybrid cycle effectiveness revealed that the optimum efficiency is ensured provided the TEG power does not exceed 12–15% of the total hybrid power plant power. Considering a value of the PEMFC mean power of around 8, a need arises in TEG of 500 to 1500W power to operate as a part of hybrid engine. Among various auxiliaries involved into the PEMFC, there should be devices that ensure getting target values in terms of hydrogen purity, a dominant synthetic gas fraction, at the FC inlet. A need to get and maintain hydrogen purity on the level of 99.99% is related with that if CO content in mixture is higher 0.01%, then a normal operation of FC fails due to “poisoning” effect of the platinum-containing catalysts of the FC electrodes. To forestall this, the palladium molecular membranes are now typically applied which causes the filtered flow temperature limitations within values not exceeding 500–550°C. At the same time, PEMFC in most cases must operate on air and syngas produced by reforming, with their temperature amounting to 800–900°C. To provide this, we need to have ceramic molecular membranes (CMM) made of a ceramic support in which macropores nano pores are formed (characteristic size of less 0.3nm), the latter achieved through application of a complex of various chemical and physical processes. In the paper presented, findings of numerical studies over a hybrid engine plant are provided, this hybrid plant (PEMFC + MEMS) as compared with alternatives to existing and offered schemes, and, also, test data on the zeolite-based support CMM are demonstrated.


2016 ◽  
Author(s):  
Jorge A. Rangel Arista ◽  
J. Jesús Pacheco Ibarra ◽  
Carlos Rubio-Maya ◽  
Oskar J. González Pedraza ◽  
Daniel Alcantar Martinez

The Mexican government due to the need of developing and creating cutting-edge technology for application of renewable energy has created renewable energy centers to develop research projects related to solar, wind and geothermal energy. In particular, geothermal energy has been of great interest due to high geothermal energy potential reported for the country. Regarding the projects approved by the Mexican government, the Universidad Michoacana de San Nicolás de Hidalgo, has been granted with fundings to carry out the design and implementation of a geothermal-solar hybrid plant for electricity production. This project is being developed in the community of San Nicolás Simirao (Michoacan State) where geothermal energy is available and exploited from an existing geothermal well. Initially, the well ran through induction, but fluid flow was not constant for long periods and was not sufficient to obtain a full operation of the geothermal-solar hybrid power plant. Therefore, it was necessary to explore new techniques to extract geothermal energy effectively, meeting design conditions of power plant. One solution might be a geothermal heat exchanger to extract heat from the rock and carry it to the surface. Literature reports two basic configurations of geothermal heat exchangers: one of them is the Downhole Coaxial Heat Exchanger and the other one is Borehole Heat Exchanger. Before making a decision to implement one type or another, several studies were carried out by the authors of this work to determine what type of configuration was most suitable, considering in such studies technical and economic aspects that provided information to continue or not the project. Therefore, in this paper the numerical analysis of both configurations (Downhole Coaxial Heat Exchanger and Borehole Heat Exchanger) is presented. The study was conducted to determine what type of geothermal exchanger presents the best trade-off between maximum heat extraction rate and minimum length to minimize costs. A minimum temperature of 125°C was proposed to reach at the hot fluid heat exchanger outlet, allowing a normal operation of the geothermal-solar hybrid plant. Through numerical analysis was determined that the Borehole Heat Exchanger configuration did not present good heat extractions rates, obtaining that for 100 m length the outlet temperature of the hot fluid was even lower to that of entering into the well. This behavior was attributed to heat loss in the return pipe. For the same configuration, but using a length of 500 m, a temperature of 117.21°C was reached at the heat exchanger outlet. On the other hand, the Downhole Coaxial Heat Exchanger configuration reached a temperature of 118.35°C for a length of 100 m. For a length of 200 m a temperature of 131.25°C was obtained, whereby the facility can operate with the minimum necessary conditions. Finally, for a length of 500 m, a temperature of 134.67°C was reached, showing that this type of configuration is the most suitable to be installed in the geothermal well. Thus the Downhole Coaxial Heat Exchanger configuration has more advantages than the Borehole Heat Exchanger configuration from a technical and economic (by pipe cost) point of view.


2008 ◽  
Vol 31 (5) ◽  
pp. 743-757 ◽  
Author(s):  
K.R. Fowler ◽  
J.P. Reese ◽  
C.E. Kees ◽  
J.E. Dennis ◽  
C.T. Kelley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document