scholarly journals Ad Hoc Vehicle Networks: Recapitulation and Challenges

2021 ◽  
Vol 10 (1) ◽  
pp. 45-52
Author(s):  
S. Neelambike ◽  
C. Amith Shekhar ◽  
B. H. Rekha ◽  
Bhavana S. Patil

Being ad-hoc in design, VA NET is a form of networks generated by the idea of building up a network of cars for a specific needs or circumstance. In addition to the benefits, VANET poses a large number of challenges such as providing QoS, high bandwidth and connectivity, and vehicle and individual privacy security. Each report discusses VANET 's state-of-the-art, explaining the relevant problems. We address in depth network design, signal modelling and propagation mechanisms m, usability modeling, routing protocols and network security. The paper's key results are that an effective and stable VANET satisfies all architecture criteria such as QoS, minimal latency, low BER and high PDR. At the end of the paper are addressed several primary work areas and challenges at VANET.

Author(s):  
Tarek S. Sobh

Aim:: This work evaluates existing secure ant colony protocols of MANETs such as ASHFIK, AAMRP, and MANHSI with each other. Here, each node in the proposed ad hoc network protocols is known with a trust value. Each trust value represents the corresponding security level and a node with a higher trust value is authorized to monitor and lead as a core node its neighboring nodes. Background:: Trusted critical MANET is a secure wireless network that is used in different critical applications. Military battlefields are an example of these applications that force on people a number of needed things including robustness and reliable performance within high mobility situations and constraints (e.g. hostile attacks, cost, and battery limits). Objectives:: In this work, the extremely important similarity between the features of critical MANETs and the core-based routing protocols that are based-on ant colonies. Methods:: The metrics used in this evaluation are the availability, reliability, packet delivery ratio, and total overheads, while the performance is serious and stubborn because of the mobility of node, senders' number, and size of a multicast group. Results:: The results of the simulation show that ASHFIK provides better availability, reliability, Packet Delivery Ratio (PDR), and lower total overheads. In addition, the results show that ASHFIK remains consistent performance with a different group size of the network. It means a trusted and scalable network of ant colony core-based routing protocols. Conclusion:: here are existing different mobile ad hoc networks based-on ant colonies. According to our comparative study and state-of-the-art, the ASHFIK protocol can be used as a good routing protocol for critical MANETs that are based-on ant colonies.


2019 ◽  
Vol 15 (8) ◽  
pp. 155014771986639 ◽  
Author(s):  
Abdelhamied A Ateya ◽  
Ammar Muthanna ◽  
Irina Gudkova ◽  
Yuliya Gaidamaka ◽  
Abeer D Algarni

Unmanned aerial vehicle is one of the main announced use cases of 5G/IMT2020, which is expected to have various applications in many fields. These devices have limited capabilities in terms of energy and processing. Due to the complex structure of unmanned aerial vehicle networks and the high mobility constraints, design of efficient routing protocol, for supporting such network, is a challenge. Thus, efficient routing of data among unmanned aerial vehicles between source and destination is an important issue in designing unmanned aerial vehicle networks. Proactive routing protocols are one of the main categories of routing protocols developed for mobile ad hoc networks and vehicular ad hoc networks. Optimized link state routing protocol is one of the most common proactive routing protocols that has been modified to support unmanned aerial vehicle networks, considering high mobility feature of the network. In this work, we propose a latency and energy-efficient proactive routing protocol for dense unmanned aerial vehicle networks, with high-density devices, based on optimized link state routing protocol algorithm, referred to as multi-objective optimized link state routing protocol. The proposed routing protocol is topology aware and can be used for low-latency and high-mobility applications. The proposed multi-objective optimized link state routing protocol routing algorithm considers all modified versions of optimized link state routing protocol and introduces a novel method for selecting multipoint relay nodes that considers the traffic load on the communication channel and the load on each unmanned aerial vehicle node. Moreover, the proposed algorithm considers the communication link stability and the energy constraints. The system is simulated over a reliable environment for various scenarios, and it is compared to the original optimized link state routing protocol and its modified versions. Simulation results indicate that the proposed protocol achieves higher efficiency in terms of latency, energy, and reliability.


Author(s):  
ABHILASH KUMAR M ◽  
RAMA MOHAN REDDY A ◽  
◽  

2005 ◽  
Author(s):  
Patrick W. Fitzgibbons ◽  
Digen Das ◽  
Larry J. Hash

Sign in / Sign up

Export Citation Format

Share Document