Secure Mobile ad Hoc Networks Based-on Ant Colony: A Comparative Study and State-of-the-art Core-based Networks

Author(s):  
Tarek S. Sobh

Aim:: This work evaluates existing secure ant colony protocols of MANETs such as ASHFIK, AAMRP, and MANHSI with each other. Here, each node in the proposed ad hoc network protocols is known with a trust value. Each trust value represents the corresponding security level and a node with a higher trust value is authorized to monitor and lead as a core node its neighboring nodes. Background:: Trusted critical MANET is a secure wireless network that is used in different critical applications. Military battlefields are an example of these applications that force on people a number of needed things including robustness and reliable performance within high mobility situations and constraints (e.g. hostile attacks, cost, and battery limits). Objectives:: In this work, the extremely important similarity between the features of critical MANETs and the core-based routing protocols that are based-on ant colonies. Methods:: The metrics used in this evaluation are the availability, reliability, packet delivery ratio, and total overheads, while the performance is serious and stubborn because of the mobility of node, senders' number, and size of a multicast group. Results:: The results of the simulation show that ASHFIK provides better availability, reliability, Packet Delivery Ratio (PDR), and lower total overheads. In addition, the results show that ASHFIK remains consistent performance with a different group size of the network. It means a trusted and scalable network of ant colony core-based routing protocols. Conclusion:: here are existing different mobile ad hoc networks based-on ant colonies. According to our comparative study and state-of-the-art, the ASHFIK protocol can be used as a good routing protocol for critical MANETs that are based-on ant colonies.

2021 ◽  
Vol 10 (1) ◽  
pp. 434-440
Author(s):  
Hussein M. Haglan ◽  
Salama A. Mostafa ◽  
Noor Zuraidin Mohd Safar ◽  
Aida Mustapha ◽  
Mohd. Zainuri Saringatb ◽  
...  

Mobile Ad-hoc Networks (MANETs) are independent systems that can work without the requirement for unified controls, pre-setup to the paths/routes or advance communication structures. The nodes/hubs of a MANET are independently controlled, which permit them to behave unreservedly in a randomized way inside the MANET. The hubs can leave their MANET and join different MANETs whenever the need arises. These attributes, in any case, may contrarily influence the performance of the routing conventions (or protocols) and the general topology of the systems. Along these lines, MANETs include uniquely planned routing conventions that responsively as well as proactively carry out the routing. This paper assesses and looks at the effectiveness (or performance) of five directing conventions which are AOMDV, DSDV, AODV, DSR and OLSR in a MANET domain. The research incorporates executing a simulating environment to look at the operation of the routing conventions dependent on the variable number of hubs. Three evaluation indices are utilized: Throughput (TH), Packet Delivery Ratio (PDR), and End-to-End delay (E2E). The assessment outcomes indicate that the AODV beats other conventions in the majority of the simulated scenarios.


Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Yelena Trofimova ◽  
Pavel Tvrdík

In wireless ad hoc networks, security and communication challenges are frequently addressed by deploying a trust mechanism. A number of approaches for evaluating trust of ad hoc network nodes have been proposed, including the one that uses neural networks. We proposed to use packet delivery ratios as input to the neural network. In this article, we present a new method, called TARA (Trust-Aware Reactive Ad Hoc routing), to incorporate node trusts into reactive ad hoc routing protocols. The novelty of the TARA method is that it does not require changes to the routing protocol itself. Instead, it influences the routing choice from outside by delaying the route request messages of untrusted nodes. The performance of the method was evaluated on the use case of sensor nodes sending data to a sink node. The experiments showed that the method improves the packet delivery ratio in the network by about 70%. Performance analysis of the TARA method provided recommendations for its application in a particular ad hoc network.


Author(s):  
J. Kaur ◽  
S. Kaur

Mobile Ad Hoc Networks (MANETs) are comprised of an arrangement of self-sorting mobile hosts furnished with wireless interaction devices gathered in groups without the need of any settled framework as well as centralized organization to maintain a system over radio connections. Every mobile node can react as a host and also, the router freely utilizes the wireless medium inside the correspondence range to deal with the interaction between huge quantities of individual mobile nodes by framing a correspondence system and trading the information among them without using any described group of the base station. A trust-based model in MANET estimates and sets up trust relationship among objectives. Trust-based routing is utilized to keep away data from different attackers like a wormhole, DOS, black-hole, selfish attack and so forth. Trust can be executed in different steps like reputation, subjective rationale and from the supposition of the neighboring node. A trust estimation approach not just watches the behavior of neighbor nodes, additionally it screens the transmission of the information packet in the identification of the route for exact estimation of trust value. A survey is carried out to find some of the limitations behind the existing works which has been done by the researchers to implement various approaches thus to build the trust management framework. Through the survey, it is observed that existing works focused only on the authenticated transmission of the message, how it transmits packets to the destination node securely using a trust-based scheme. And also, it is observed that the routing approach only focused on the key management issues. Certain limitation observed in the implemented approaches of existing work loses the reliability of framework. Thus, to withstand these issues it is necessary to establish a reliable security framework that protects the information exchanged among the users in a network while detecting various misbehaving attacks among the users. Confidentiality, as well as the integrity of information, can be secured by combining context-aware access control with trust management. The performance parameters should be evaluated with the previous works packet delivery ratio, packet drop, detection accuracy, number of false positives, and overhead.


Author(s):  
S. Maharaja ◽  
R. Jeyalakshmi ◽  
A.V. Sabarish Kanna ◽  
M. Deva Priya

A Mobile Adhoc Network (MANET) is prone to attacks. Adversaries take hold of the network, thus degrading their performance. Various attacks are prevalent in MANET, out of which Byzantine attack plays a vital role. A node or group of nodes present in the routing path between the source and the destination may be compromised due to Byzantine attack. In this paper, Cohen Kappa Reliability Coefficient based Mitigation (CKRCM) mechanism is proposed to deal with these attacks. The intermediate nodes are monitored by their neighbors for a timestamp. If the monitoring node does not receive an acknowledgment, then the nodes are perceived to be attacked. The trustworthiness of the nodes is built by computing the trusts and reliabilities of the nodes. It is seen that the proposed scheme outperforms the existing scheme in terms of Throughput, Packet Delivery Ratio (PDR) and Packet Loss Ratio (PLR).


Author(s):  
MONALI SAHOO ◽  
ASHISH CHAURASIA

Mobile ad hoc networks (MANETs) can be defined as a collection of large number of mobile nodes that form temporary network without aid of any existing network infrastructure or central access point. The Efficient routing protocols can provide significant benefits to mobile ad hoc networks, in terms of both performance and reliability. Many routing protocols for such networks have been proposed so far. The main method for evaluating the performance of MANETs is simulation. The Network Simulator is a discrete event driven simulator. The goal of ns-2 is to support networking ,research, and education. In this paper we create a new Routing Protocol called My Router step by step in Ns-2.Then we evaluate its performance based on several parameters such as Packet Delivery Ratio , End to End Delay etc and compare it with MANET routing protocol OLSR .


Author(s):  
Vu Khanh Quy ◽  
Pham Minh Chuan ◽  
Le Anh Ngoc

Mobile ad-hoc networks (MANETs) is a set of mobile devices that can self-configuration, self-established parameters to transmission in-network. Although limited inability, MANETs have been applied in many domains to serve humanity in recent years, such as disaster recovery, forest fire, military, intelligent traffic, or IoT ecosystems. Because of the movement of network devices, the system performance is low. In order to MANETs could more contribution in the future of the Internet, the routing is a significant problem to enhance the performance of MANETs. In this work, we proposed a new delay-based protocol aim enhance the system performance, called performance routing protocol based on delay (PRPD). In order to analyze the efficiency of the proposed solution, we compared the proposed protocol with traditional protocols. Experiment results showed that the PRPD protocol improved packet delivery ratio, throughput, and delay compared to the traditional protocols.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Ngoc T. Luong ◽  
Tu T. Vo ◽  
Doan Hoang

Request route flooding attack is one of the main challenges in the security of Mobile Ad Hoc Networks (MANETs) as it is easy to initiate and difficult to prevent. A malicious node can launch an attack simply by sending an excessively high number of route request (RREQ) packets or useless data packets to nonexistent destinations. As a result, the network is rendered useless as all its resources are used up to serve this storm of RREQ packets and hence unable to perform its normal routing duty. Most existing research efforts on detecting such a flooding attack use the number of RREQs originated by a node per unit time as the threshold to classify an attacker. These algorithms work to some extent; however, they suffer high misdetection rate and reduce network performance. This paper proposes a new flooding attacks detection algorithm (FADA) for MANETs based on a machine learning approach. The algorithm relies on the route discovery history information of each node to capture similar characteristics and behaviors of nodes belonging to the same class to decide if a node is malicious. The paper also proposes a new flooding attacks prevention routing protocol (FAPRP) by extending the original AODV protocol and integrating FADA algorithm. The performance of the proposed solution is evaluated in terms of successful attack detection ratio, packet delivery ratio, and routing load both in normal and under RREQ attack scenarios using NS2 simulation. The simulation results show that the proposed FAPRP can detect over 99% of RREQ flooding attacks for all scenarios using route discovery frequency vector of sizes larger than 35 and performs better in terms of packet delivery ratio and routing load compared to existing solutions for RREQ flooding attacks.


Sign in / Sign up

Export Citation Format

Share Document